首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this research is to find out the effects of free ammonia concentration and dissolved oxygen on nitrification and nitrite accumulation in a biofilm airlift reactor. Free ammonia seriously inhibited the activity of nitrite oxidizers at the concentration higher than 0.1 mg NH3-N/L and it was very effective for nitrite accumulation. Dissolved oxygen limitation in the biofilm also caused nitrite accumulation. Long term inhibition decreased the growth rate for nitrite oxidizers, and ammonia oxidizers were the dominant nitrifiers in the wastewater nitrification. Selective accumulation of ammonia oxidizers in the biofilm could be another reason for nitrite accumulation. Free ammonia inhibited nitrite oxidizers immediately, and adaptation to free ammonia was not observed. Therefore, the optimum control of free ammonia and dissolved oxygen concentration is critical for nitrite accumulation and the strategy can be used for selective accumulation of ammonia oxidizers in a bioreactor system.  相似文献   

2.
A membrane‐assisted bioreactor (MBR) for sustained nitrite accumulation is presented, treating a synthetic wastewater with total ammonium nitrogen (TAN) concentrations of 1 kg N m?3 at a hydraulic retention time down to 1 day. Complete biomass retention was obtained by microfiltration with submerged hollow fibre membranes. A membrane flux up to 189.5 dm3 day?1 m?2 could be maintained at a suction pressure below 100 kPa. Nitrification was effectively blocked at the nitrite stage (nitritation), and nitrate concentration was less than 29 g N m?3. The rate of aeration was reduced to obtain a mixture of ammonium and nitrite, and after adjusting this rate the TAN/NO2‐N ratio in the reactor effluent was kept around unity, making it suitable for further treatment by anaerobic oxidation of ammonium with nitrite. After increasing again the rate of aeration, complete nitrification to nitrate recovered after 11 days. It is suggested that nitrite accumulation resulted from a combination of factors. First, the dissolved oxygen (DO) concentration in the reactor was always limited with concentrations below 0.1 g DO m?3, thereby limiting nitrification and preventing significant nitrate formation. The latter is attributed to the fact that ammonium‐oxidising bacteria cope better with low DO concentrations than nitrite oxidisers. Second, the MBR was operated at a high ammonia concentration of 7–54 g N m?3, resulting in ammonia inhibition of the nitrite‐oxidising microorganisms. Third, a temperature of 35 °C was reported to yield a higher maximum growth rate for ammonium‐oxidising bacteria than for nitrite‐oxidising bacteria. Nitrite oxidisers were always present in the MBR but were out‐competed under the indicated process conditions, which is reflected in low concentrations of nitrate. Oxygen limitation was shown to be the most important factor to sustain nitrite accumulation. Nevertheless, nitritation was possible at ambient temperature (22–24 °C), lower ammonia concentration (<7 g N m?3) and when using raw nitrogenous wastewater containing some biodegradable carbon. Overall, application of the MBR for nitritation was shown to be a reliable technology. © 2003 Society of Chemical Industry  相似文献   

3.
采用高氨氮人工配水和序批式反应器,在限氧(0.2~0.3mg/L)条件下,研究了进水氨氮负荷、游离氨和游离亚硝酸对氨氮转化率、亚硝化率和亚硝氮生成速率的影响及游离氨对氨氧化菌的基质抑制动力学。结果表明,在进水氨氮负荷逐步提升过程中,由于高浓度游离氨的抑制作用及负荷冲击的影响,亚硝化效果易出现波动,且负荷越高,亚硝化性能恢复的时间越长。反应系统最终可达到的氨氮容积负荷为3.60kg/(m3·d),亚硝氮生成速率为2.98kg/(m3·d),亚硝化率始终维持在85%左右。反应体系中较高的游离氨浓度(24.4~85.8mg/L)和低浓度溶解氧是维持亚硝化工艺稳定运行的主要因素。游离氨对氨氧化菌的抑制动力学符合Haldane模型,拟合得到最大氨氧化速率为6.71gN/(gVSS·d),游离氨半饱和常数和抑制常数分别为3.2mg/L和27.8mg/L。  相似文献   

4.
BACKGROUND: The immobilized cell fluidized bed reactor and contact oxidation biofilm reactor are two common choices for high strength ammonia wastewater treatment, however, comparative study of the nitrification performance of the two reactors has not been thoroughly studied. The nitrification performance of the two bioreactors when treating strong synthetic ammonia wastewater was investigated and compared. RESULTS: Results demonstrated that the immobilized cell fluidized bed reactor had a shorter acclimation period, and possessed several advantages over the contact oxidation biofilm reactor, in the form of complete oxidation of 150–360 mg L?1 ammonia wastewater in a shorter time, higher ammonia removal rates (from 9.6 to 4.32 × 102 mgN L?1 d?1) over the temperature range 8 to 32 °C, irrespective of organic load. In contrast, a large reduction in ammonia removal was found in the contact oxidation biofilm reactor with chemical oxygen demand (COD) load. The immobilized cell fluidized bed reactor exhibited stable and high rates of nitrification in the long term. CONCLUSION: These facts demonstrated that the immobilized cell fluidized bed reactor is a suitable selection for high strength ammonia wastewater treatment. Copyright © 2007 Society of Chemical Industry  相似文献   

5.
In this study, a lab‐scale sequencing batch reactor (SBR) has been tested to remove chemical oxygen demand (COD) and NH4+‐N from the supernatant of anaerobic digestion of the organic fraction of municipal solid waste. This supernatant was characterized by a high ammonium concentration (1.1 g NH4+‐N L?1) and an important content of slowly biodegradable and/or recalcitrant COD (4.8 g total COD L?1). Optimum SBR operating sequence was reached when working with 3 cycles per day, 30 °C, SRT 12 days and HRT 3 days. During the time sequence, two aerobic/anoxic steps were performed to avoid alkalinity restrictions. Oxygen supply and working pH range were controlled to promote the nitrification over nitrite. Under steady state conditions, COD and nitrogen removal efficiencies of more than 65% and 98%, respectively, were achieved. A closed intermittent‐flow respirometer was used to characterize and model the SBR performance. The activated sludge model ASM1 was modified to describe the biological nitrogen removal over nitrite, including the inhibition of nitrification by unionized ammonia and nitrous acid concentrations, the pH dependency of both autotrophic and heterotrophic biomass, pH calculation and the oxygen supply and stripping of CO2 and NH3. Once calibrated by respirometry, the proposed model showed very good agreement between experimental and simulated data. Copyright © 2007 Society of Chemical Industry  相似文献   

6.
BACKGROUND: A laboratory‐scale membrane aeration bioreactor was employed to treat synthetic ammonium‐rich wastewater to yield an appropriate NH4+/NO2? ratio for anaerobic ammonium oxidation (ANAMMOX). The main objectives of this study were to steadily obtain 50% partial nitrification in batch experiments, to evaluate the effects of aeration and to identify the dominant bacterial community of the biofilm for partial nitrification. RESULTS: Some of the ammonium in the synthetic wastewater was partially nitrified. A suitable NH4+/NO2? ratio (1:1 to 1:1.3) for the ANAMMOX process was obtained after 24 h. The dissolved oxygen (DO) level in the treated water was very low (below 0.6 mg L?1). Both the appropriate NH4+/NO2? ratio and the low DO level make this bioreactor an ideal pretreatment system for ANAMMOX. In addition, a molecular biotechnology method was applied to prove that the ammonia‐oxidizing bacteria dominated the biofilm. CONCLUSION: This system achieved surprising cost savings in the aeration process compared with traditional aeration systems. The combination of this system with the subsequent ANAMMOX process has great potential as a favorable short‐cut in the treatment of ammonium‐rich wastewater. Copyright © 2007 Society of Chemical Industry  相似文献   

7.
BACKGROUND: This study was conducted to investigate the feasibility and performance of nitrogen removal through the complete autotrophic nitrogen removal over nitrite (CANON) process for saline wastewater in a continuous reactor, and to characterize microorganisms in the sludge from the reactor using DNA‐based techniques. RESULTS: The nitrogen removal experiment in the reactor was operated over five phases for 286 days treating a synthetic sewage of 1.2% salinity at 21–25 °C. At dissolved oxygen (DO) concentrations of 0.5–1.0 mg L?1 and in the presence of glucose, NO2? was accumulated, indicating the activity of ammonia‐oxidizing bacteria (AOB). At DO concentration of 0.5 mg L?1 without organic substrate, the anaerobic ammonium oxidation (Anammox) process was the major pathway responsible for nitrogen removal, with a total nitrogen removal of 70% and an ammonium conversion efficiency of 96%. A maximum ammonium removal rate of 0.57 kg‐N m?3 d?1 was achieved during the experimental period. The concentrations of AOB and Anammox bacteria were monitored over the operation of reactor using quantitative real‐time polymerase chain reaction (qRT‐PCR). CONCLUSION: In this study, autotrophic nitrogen removal process was achieved under salinity condition in a one‐reactor system. An over 100 fold increase of AOB was found due to the increased supply of ammonium at the beginning, then AOB concentration decreased temporarily in correspondence with the decreased DO, and the AOB resumed their concentration at the last phase. The Anammox bacteria abundance was about 150 fold higher than that at the beginning, indicating the successful enrichment of Anammox bacteria in the reactor. Copyright © 2010 Society of Chemical Industry  相似文献   

8.
Most of the kinetic studies on nitrification have been performed in diluted salts medium. In this work, the ammonia oxidation rate (AOR) was determined by respirometry at different ammonia (0.01 and 33.5 mg N‐NH3 L?1), nitrite (0–450 mg N‐NO2? L?1) and nitrate (0 and 275 mg N‐NO3? L?1) concentrations in a saline medium at 30 °C and pH 7.5. Sodium azide was used to uncouple the ammonia and nitrite oxidation, so as to measure independently the AOR. It was determined that ammonia causes substrate inhibition and that nitrite and nitrate exhibit product inhibition upon the AOR. The effects of ammonia, nitrite and nitrate were represented by the Andrews equation (maximal ammonia oxidation rate, rAOMAX, = 43.2 [mg N‐NH3 (g VSSAO h)?1]; half saturation constant, KSAO, = 0.11 mg N‐NH3 L?1; inhibition constant KIAO, = 7.65 mg N‐NH3 L?1), by the non‐competitive inhibition model (inhibition constant, KINI, = 176 mg N‐NO2? L?1) and by the partially competitive inhibition model (inhibition constant, KINA, = 3.3 mg N‐NO3? L?1; α factor = 0.24), respectively. The rAOMAX value is smaller, and the KSAO value larger, than the values reported in diluted salts medium; the KIAO value is comparable to those reported. Process simulations with the kinetic model in batch nitrifying reactors showed that the inhibitory effects of nitrite and nitrate are significant for initial ammonia concentrations larger than 100 mg N‐NH4+ L?1. Copyright © 2005 Society of Chemical Industry  相似文献   

9.
高氨氮制药废水短程生物脱氮   总被引:11,自引:1,他引:11       下载免费PDF全文
李勇智  彭永臻  王淑滢 《化工学报》2003,54(10):1482-1485
引 言短程生物脱氮的概念就是将废水中的氨氮氧化为亚硝酸盐 ,采用适当的手段阻止其进一步氧化为硝酸盐 ,然后直接进入反硝化阶段 .这样 ,将节省2 5 %因为供氧而消耗的能源 ,在反硝化过程中将节省 4 0 %的有机碳源 ,同时反应的速率大幅度提高 ,剩余污泥量大为减少[1~ 5] .实现短程硝化与反硝化的关键在于抑制硝酸菌的增长 ,从而导致亚硝酸盐在硝化过程中得到稳定的积累[6] .短程生物脱氮工艺尤其适用于低碳氮比、高氨氮、高pH值和高碱度废水的处理 ,而在处理过程中较多地采用序批式生 物反应器 (SBR) .序批式间歇活性污泥法的整个处理…  相似文献   

10.
A new membrane‐assisted hybrid bioreactor was developed to remove ammonia and organic matter. This system was composed of a hybrid circulating bed reactor (CBR) coupled in series to an ultrafiltration membrane module for biomass separation. The growth of biomass both in suspension and biofilms was promoted in the hybrid reactor. The system was operated for 103 days, during which a constant ammonia loading rate (ALR) was fed to the system. The COD/N‐NH4+ ratio was manipulated between 0 and 4, in order to study the effects of different organic matter concentrations on the nitrification capacity of the system. Experimental results have shown that it was feasible to operate with a membrane hybrid system attaining 99% chemical oxygen demand (COD) removal and ammonia conversion. The ALR was 0.92 kg N‐NH4+ m?3 d?1 and the organic loading rate (OLR) achieved up to 3.6 kg COD m?3 d?1. Also, the concentration of ammonia in the effluent was low, 1 mg N‐NH4+ dm?3. Specific activity determinations have shown that there was a certain degree of segregation of nitrifiers and heterotrophs between the two biomass phases in the system. Growth of the slow‐growing nitrifiers took place preferentially in the biofilm and the fast‐growing heterotrophs grew in suspension. This fact allowed the nitrifying activity in the biofilm be maintained around 0.8 g N g?1 protein d?1, regardless of the addition of organic matter in the influent. The specific nitrifying activity of suspended biomass varied between 0.3 and 0.4 g N g?1 VSS d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

11.
The SHARON (Single reactor High activity Ammonia Removal Over Nitrite) process is an innovative process that improves the sustainability of wastewater treatment, especially when combined with an Anammox process. It aims at ammonium oxidation to nitrite only, while preventing further nitrate formation. In order to optimize this process by means of modelling and simulation, parameters of the biological processes have to be assessed. Batch tests with SHARON sludge clearly showed that ammonia rather than ammonium is the actual substrate and nitrous acid rather than nitrite is the actual inhibitor of the ammonium oxidation in the SHARON process. From these batch tests the ammonia affinity constant, the nitrous acid inhibition constant and the oxygen affinity constant were determined to be 0.75 mgNH3‐N L?1, 2.04 mgHNO2‐N L?1 and 0.94 mgO2 L?1. The influence of pH and temperature on the oxygen uptake rate of SHARON biomass was determined, indicating the existence of a pH interval between 6.5 and 8 and a temperature interval from 35 to 45 °C where the biomass activity is maximal. The kinetic parameters of the SHARON process were determined based on batch experiments. These parameters can now be implemented in a simulation model for further optimization of the SHARON process. Copyright © 2007 Society of Chemical Industry  相似文献   

12.
移动床生物膜反应器SHARON工艺半亚硝化特性   总被引:7,自引:2,他引:5  
遇光禄  陈胜  孙德智 《化工学报》2008,59(1):201-208
采用移动床生物膜反应器(MBBR)对城市垃圾渗滤液进行SHARON工艺研究。主要研究了该反应器的启动情况和氨氮浓度、溶解氧(DO)以及pH等因素对反应器半亚硝化效果的影响。结果表明,在控制HRT=1 d、温度30℃、DO=0.5~1.0 mg·L-1、pH=7.5左右、无污泥回流等条件下,经过4周的运行,成功地选择培养出亚硝化型生物膜,实现了短程硝化。研究表明通过控制进水氨氮浓度、DO和pH,可以达到出水半亚硝化的处理效果。当进水氨氮浓度为500 mg·L-1时,出水半亚硝化的控制条件是pH=7.0,DO=1.5 mg·L-1;而在进水氨氮浓度为300 mg·L-1时,控制pH=7.0,DO=1.0 mg·L-1,出水也可实现半亚硝化。最大可能计数法(MPN)测定发现,亚硝化菌在数量上的绝对优势是反应器能始终保持高效稳定的亚硝氮积累的主要原因。  相似文献   

13.
The sequential photocatalytic/biological treatment of a contaminated groundwater from a local industrial site was studied. The ground water contained approximately 100 mg dm?3 ammonia, as well as mg dm?3 levels of nitrification‐inhibiting organics such as chlorobenzene. An existing treatment system uses carbon adsorption pretreatment to remove the nitrification inhibitors before the water is treated in a biological nitrification system. Photocatalysis, using a corrugated plate photoreactor, was studied as an alternative to the carbon adsorption system for inhibitor removal. Photocatalytic pretreatment was found to significantly enhance the extent of biological nitrification. An optimal pretreatment time appeared to exist, since further pretreatment resulted in accumulation of nitrite. Although further study is required, there appears to be a potential for using photocatalysis to remove inhibitors from biological nitrification systems. © 2002 Society of Chemical Industry  相似文献   

14.
Biological systems for the treatment of wastewater have to provide optimum sludge retention to achieve high removal efficiencies. In the case of slow‐growing micro‐organisms, such as anaerobic ammonia‐oxidizing (Anammox) bacteria, episodes of flotation involving biomass wash‐out are especially critical. In this study a strategy based on the introduction of a mix period in the operational cycle of the Anammox Sequencing Batch Reactor (SBR) was tested for its effects on biomass retention and nitrite removal. Using this new cycle distribution the biomass retention inside the reactor improved as the solids concentration in the effluent of the SBR decreased from 20–45 to 5–10 mg VSS dm?3 and the biomass concentration inside the reactor increased from 1.30 to 2.53 g VSS dm?3 in a period of 25 days. A decrease of the sludge volume index (SVI) from 108 to 60 cm3 g VSS?1 was also observed. Complete depletion of nitrite was achieved in the reactor only with the new cycle distribution treating nitrogen loading rates (g N‐NO2? + g N‐NH4+ dm?3 d?1) up to 0.60 g N dm?3 d?1. Copyright © 2004 Society of Chemical Industry  相似文献   

15.
BACKGROUND: Landfill leachate is characterized by low biodegradable organic matter that presents difficulties for the complete biological nitrogen removal usually performed by conventional biological nitrification/denitrification processes. To achieve this, the anaerobic ammonium oxidation (anammox) process is a promising biological treatment. This paper presents an anammox start‐up and enrichment methodology for treating high nitrogen load wastewaters using sequencing batch reactor (SBR) technology. RESULTS: The methodology is based on the gradual increase of the nitrite‐to‐ammonium molar ratio in the influent (from 0.76 to 1.32 mole NO2?‐N mole?1NH4+‐N) and on the exponential increase of the nitrogen loading rate (NLR, from 0.01 to 1.60 kg N m?3 d?1). 60 days after start‐up, anammox organisms were identified by polymerase chain reaction (PCR) technique as Candidatus Brocadia anammoxidans. After one year of operation, NLR had reached a value of 1.60 kg N m?3 d?1 with a nitrogen (ammonium plus nitrite) removal efficiency of 99.7%. The anammox biomass activity was verified by nitrogen mass balances with 1.32 ± 0.05 mole of nitrite removed per mole of ammonium removed and 0.23 ± 0.05 mole of nitrate produced per mole of ammonium removed. Also, enrichment of anammox bacteria was quantified by fluorescence in situ hybridization (FISH) analysis as 85.0 ± 1.8%. CONCLUSIONS: This paper provides a methodology for the enrichment of the anammox biomass in a SBR to treat high nitrogen loaded wastewaters. Copyright © 2007 Society of Chemical Industry  相似文献   

16.
采用序批式活性污泥法,通过控制溶解氧浓度开发出处理高氮豆制品废水的新工艺.实验结果显示,当曝气阶段反应器内溶解氧浓度保持在0.5 mg&#8226;L-1左右时,曝气过程中NO-2-N/NO-x-N的比率始终维持在93%以上,并且曝气结束时,有大约87.6%的氨氮是通过同步硝化反硝化途径去除的.因此,控制反应器内溶解氧浓度在0.5 mg&#8226;L-1左右时,在一个反应器内同时实现了亚硝酸型硝化反硝化和同步硝化反硝化.经过理论计算和机理分析,在此溶解氧下,亚硝酸菌的比增殖速率近似为硝酸菌的2.22~2.43倍,并且低溶解氧容易在活性污泥颗粒内形成进行反硝化作用的缺氧区.因此,在常温下,只要采用溶解氧传感器控制SBR反应器内溶解氧浓度在0.5 mg&#8226;L-1左右,就可以实现稳定的亚硝酸型同步硝化反硝化生物脱氮工艺.  相似文献   

17.
The nitrification process (ie biological ammonium oxidation to nitrate) is a two‐step process with nitrite as an intermediate product. As it is an aerobic process, its kinetics is highly dependent on the dissolved oxygen (DO) concentration in the medium. However, the influence of this limitation on the nitritation (first step) is shown to be less important than in the nitratation (second step). This dependence on DO concentration is generally described using a Monod‐type kinetics with KO as the oxygen affinity constant. In this work, a procedure for the calculation of both affinity constants is presented. This procedure is based on monitoring the DO drop in the reactor when external aeration is stopped and the biomass is consuming without substrate (ammonium or nitrite) limitations. This methodology includes the contemplation of the oxygen transfer from the atmosphere, the response time of the DO probe and the inhibition of the nitratation step with sodium azide when estimating KOA (nitritation oxygen affinity constant). The results obtained are KOA = 0.74 ± 0.02 mg O2 dm?3 and KON = 1.75 ± 0.01 mg O2 dm?3. Moreover the influence of the aforementioned considerations on the estimated KO values is also discussed. Copyright © 2005 Society of Chemical Industry  相似文献   

18.
BACKGROUND: A packed bed bioreactor (PBBR) activated with an indigenous nitrifying bacterial consortia was developed and commercialized for rapid establishment of nitrification in brackish water and marine hatchery systems in the tropics. The present study evaluated nitrification in PBBR integrated into a Penaeus monodon recirculating maturation system under different substrate concentrations and flow rates. RESULTS: Instant nitrification was observed after integration of PBBR into the maturation system. TAN and NO2‐N concentrations were always maintained below 0.5 mg L?1 during operation. The TAN and NO2‐N removal was significant (P < 0.001) in all the six reactor compartments of the PBBR having the substrates at initial concentrations of 2, 5 and 10 mg L?1. The average volumetric TAN removal rates increased with flow rates from 43.51 (250 L h?1) to 130.44 (2500 L h?1) gTAN m?3 day?1 (P < 0.05). FISH analysis of the biofilms after 70 days of operation gave positive results with probes NSO 190 ((β ammonia oxidizers), NsV 443 (Nitrosospira spp.) NEU (halophilic Nitrosomonas), Ntspa 712 (Phylum Nitrospira) indicating stability of the consortia. CONCLUSION: The PBBR integrated into the P. monodon maturation system exhibited significant nitrification upon operation for 70 days as well as at different substrate concentrations and flow rates. This system can easily be integrated into marine and brackish water aquaculture systems, to establish instantaneous nitrification. Copyright © 2011 Society of Chemical Industry  相似文献   

19.
Li-Bing Chu 《Desalination》2005,172(3):271-280
An innovative process, the oxygen-limited membrane bioreactor seeded with anaerobic granular sludge, wasproposed and its performance investigated for concurrent removal of organic substances and nitrogen from synthetic domestic wastewaters. An air diffuser was installed just above the granular sludge bed to supply air to the reactor at an intermittent mode. The internal recycle from the upper part of the reactor to the bottom was introduced to provide the granular sludge bed under the oxygen-limited conditions. The oxygen addition rates were controlled at 3-4 g O2 1−1d−1. The total COD removal efficiency of more than 94% was achieved throughout the whole operation period. N was removed through the simultaneous nitrification and denitrification process that took place in the granular sludge bed. TN levels decreased with the decrease of ammonium levels, indicating that nitrification was the rate-limiting step. The TN removal efficiency reached 80-91% at an hydraulic retention time of 15 h. Nitrate was scarcely detected and nitrite was the main NOx-N species in the effluent, indicating that nitrite oxidizers were inhibited in the system.  相似文献   

20.
A system consisting of a two-stage up-flow anaerobic sludge blanket (UASB) reactor and an anoxic/aerobic (A/O) reactor was used to treat municipal landfill leachate. Denitrification took place in the first stage of the UASB re-actor (UASB1). The chemical oxygen demand of the UASB1 effluent was further decreased in the second stage (UASB2). Nitrification was accomplished in the A/O reactor. When diluted with tap water at a ratio of 1:1, the ammonia nitrogen concentration of the influent leachate was approximately 1200 mg·L?1, whereas that of the system effluent was approximately 8–11 mg·L?1, and the corresponding removal efficiency is about 99.08%. Stable partial nitrification was achieved in the A/O reactor with 88.61%–91.58%of the nitrite accumula-tion ratio, even at comparatively low temperature (16 °C). The results demonstrate that free ammonia (FA) con-centrations within a suitable range exhibit a positive effect on partial nitrification. In this experiment when FA was within the 1–30 mg·L?1 range, partial nitrification could be achieved, whereas when FA exceeded 280 mg·L?1, the nitrification process was entirely inhibited. Temperature was not the key factor leading to par-tial nitrification within the 16–29 °C range. The inhibitory influence of free nitrous acid (FNA) on nitrification was also minimal when pH was greater than 8.5. Thus, FA concentration was a major factor in achieving partial nitrification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号