首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
喻春明  张继明  党波  张毅 《金属热处理》2021,46(12):204-208
采用电子背散射衍射(EBSD)对不同轧制和热处理态的高磁感取向硅钢的重合位置点阵(CSL)晶界和织构进行了研究。结果表明,热轧态取向硅钢截面织构呈层状分布,表层主要为{110}<001>Goss织构,1/4厚度主要为{001}<110>立方织构、{112}<111>铜型织构和{110}<001>Goss织构,而心部则形成较强的{112}<111>铜型织构、{111}<110>形变织构和{110}<001>Goss织构;常化处理后截面织构梯度变化不明显,但中心位置{112}<111>织构向{110}<001>Goss织构转变。冷轧退火态主要织构为{110}<001>Goss织构、{112}<111>织构和{111}<110>形变织构。二次再结晶后,则生成强烈的{110}<001>Goss织构。随着织构的变化,CSL晶界也发生了明显的转变。热轧态CSL重位晶界中∑3~∑29均有出现,但比例较低;常化处理后CSL重位晶界比例增加,冷轧退火后CSL晶界比例大幅提高,特别是∑3、∑7、∑9和∑15等晶界;二次再结晶后,由于CSL晶界发生了转化,CSL晶界类型减少,∑3、∑13等晶界比例增加,∑9晶界消失。  相似文献   

2.
采用X-ray衍射和光学显微镜对AA3104铝合金热粗轧板沿厚向的织构和组织进行研究。结果表明:热粗轧板中存在明显的组织和织构梯度现象;在表层及次表层,剪切织构占主导地位,表现为较强的旋转立方织构R-cube{001}110和{112}110织构,显微组织以再结晶组织为主;在中心层及过渡层,则以典型的形变织构(即Cu{112}111、S{123}634和Bs{011}211)及热变形流线组织为主;这种沿厚度方向的组织和织构梯度对热变形后再结晶织构也有很大影响,热粗轧板中原始的剪切织构有助于退火后立方织构的形成,而原始中心层的形变织构会促使热变形退火后产生{111}110剪切织构和P织构。  相似文献   

3.
以厚度为60 mm的6061铝合金板材为研究对象,采用Deform仿真分析技术研究了不同压下率轧制变形过程中板材温度、应变、应力场的变化规律,着重分析了对板材心部、1/4处、表层的影响,并结合粘塑性自洽(VPSC)有限元法研究了板材不同位置处的织构演变规律,为铝合金轧制过程中的变形行为和各向异性研究提供了新的方法。结果表明:多道次轧制过程中,心部与表层区域的最大温差受轧件压下率影响不大,最大温差为10℃,板材表层和1/4处的累积应变均始终大于心部,轧件与轧辊接触导致表层承受较大的应力,轧件局部表现出明显的应力分布不均匀的状态;轧件表层、1/4处以及心部均形成了β取向线上的3种典型织构,即Copper织构{112}<11-1>、Brass织构{011}<21-1>和S织构{123}<63-4>,随着轧制压下率的不断增大,织构的体积分数越来越大,织构强度也逐渐增大,其中,S织构的体积分数和强度上升趋势明显,进一步说明S织构相比其他两种织构对应变变化过程更加敏感。  相似文献   

4.
以实验室模拟CSP连铸连轧工艺制备的热轧硅钢为基板,通过实验室常化、冷轧和初次再结晶退火实验,采用XRD和EBSD技术对样品从热轧到初次再结晶阶段的织构演变进行了研究。结果表明:GOSS晶粒起源于热轧的次表层,沿着次表层到中心层逐渐降低,热轧板中心层主要为{001}110织构。一次冷轧后,次表层存在强的{001}110和{112}110织构;1/4层存在强的{001}110和{112}110以及较强的{111}112织构;中心层则只存在强的{001}110织构。初次再结晶后,硅钢形成了强点{111}112织构的γ织构,GOSS织构再次出现,且分布在{111}112织构周围。GOSS晶粒周围以35°~55°大角度晶界为主,同时还有很高的Σ3和Σ5重合位置点阵。  相似文献   

5.
采用XRD、EBSD和TEM技术对单晶高纯Cu(99.999%)经等通道转角挤压(ECAP)A路径过程中的形变织构进行了研究,测试了ECAP后单晶Cu的力学性能和导电性能,并分析了变形过程中织构演变机理及其对力学性能和导电性能的影响。结果表明:原始单晶Cu经2道次变形后,晶内出现了微小的等轴状形变结构;4道次变形后,形成了(110)取向一致的形变带结构;8道次变形后,单晶组织开始破碎,晶粒取向又逐渐趋于(111)面,形成了{111}110和{111}112织构及较弱的{001}100再结晶织构。中、低应变下,形成稳定取向的{hkl}110织构,可有效降低晶界对电子的散射作用,使电导率略有增加,同时有利于大幅度提高材料的加工硬化率。单晶Cu变形初始阶段形成了大量小角度晶界,随着应变的增加,小角度晶界逐渐向大角度晶界转变。由于变形过程中位错积聚及晶界密度增加对位错运动起到阻碍作用,3道次变形后,抗拉强度从168 MPa增加至400 MPa,延伸率从63%减小至27.3%,在随后的变形中抗拉强度增加缓慢,延伸率略有回升。前8道次变形中硬度不断增加,8道次变形后出现了再结晶,导致随后的挤压过程中硬度不稳定。  相似文献   

6.
采用透射电镜观察(TEM)、电子背散射成像技术(EBSD)和X射线衍射技术对比分析喷射成形Al-9.8Mg-1.5Li-0.4Mn合金交叉轧制态板材与挤压态板材的显微组织及织构特征,并测试板材的拉伸性能和深冲性能。结果表明:大压下量交叉轧制能促进动态再结晶的发生、细化晶粒组织以及改善再结晶晶粒的择优取向;与CBA和CCB轧制方式相比,CBB轧制方式显著降低了挤压态合金中典型Brass织构{110}112的取向密度,在β取向线上CBB轧制态板材中Copper织构{112}111和Brass织构{110}112的取向密度均最低,且板材中没有典型的织构特征;同时,CBB轧制态合金板材具有更好的深冲性能,在0°、45°和90°三个方向的力学性能基本一致,其室温拉伸强度、屈服强度和伸长率分别为617 MPa、523 MPa和大于20.1%,各方向力学性能偏差小于3%。  相似文献   

7.
对T4P态的商用6016铝合金板材沿不同方向的力学性能、显微组织和织构差异进行了研究。结果表明:合金沿不同方向的力学性能均存在明显差异,厚向异性系数r值和加工硬化系数n值均沿轧向最高,而沿45°方向最低;合金已发生完全再结晶,但是各部位再结晶晶粒仍然存在较大差异,表层晶粒数量较多且尺寸细小,而纵截面再结晶晶粒长宽比横截面的要大;合金板材沿厚度方向存在明显的织构梯度,表层主要以Cube织构{001}100和不常见的{114}131织构为主,而中间层除了Cube织构{001}100之外,还存在P{011}112、R{124}211以及{112}253;分析了织构组分与r值的关系,并建立了成形性能、组织和织构之间的定量关系。  相似文献   

8.
采用电子背散射衍射(EBSD)技术研究了经室温多向锻造(真应变ε=4)和310℃再结晶退火1 h的Pb-0.07Ca-1.8Sn-0.026Al(质量分数,%)合金在轧制及退火过程中形成Σ3晶界的条件。结果表明:经厚度减缩量为90%室温大变形轧制并经270℃中间退火的试样,能够在后续轧制和退火过程中形成占总晶界比例超过47%的Σ3晶界;相反,未经室温大变形轧制和中间退火,而直接进行30%冷轧变形轧制和退火的试样,其Σ3晶界的比例不超过18%。分析认为:样品经大变形轧制和中间退火所形成的{011}100(Goss)、{110}112(B或Brass)、{001}100(Cube)和{112}111(Copper)等织构组合是Pb-0.07Ca-1.8Sn-0.026Al合金在后续轧制和退火过程中形成大量Σ3晶界的重要条件。  相似文献   

9.
利用X射线衍射技术研究冷拔+中间退火2169N奥氏体不锈钢管材的织构转变,及其对管材扩口性能的影响。结果表明,2169N钢的层错能为27.7M·J/m2,属低层错能级别,变形方式为机械孪生。管材存在{113}121主织构组分、{111}uvw和{110}001次织构组分。{110}001织构为管材冷拔时产生,{110}001和{111}uvw织构为管材中间退火转变而成,{113}121织构为{110}112经111旋转约40°转变生成。管材{113}112主织构组分、{111}uvw和{110}001次织构组分均表现出较高的R值,不利于管材厚度方向塑性变形,影响扩口工艺性能。  相似文献   

10.
采用EBSD技术研究了挤压态GH3625合金冷变形过程中的组织演变、晶界特征分布、位错密度、应力分布及织构演变规律。结果表明,随着冷变形量的增加,晶粒变形程度加大,晶粒形貌由扁平状转变为细条状,晶体转动使得晶界与加载压力轴垂直分布;随着冷变形量的增加,大角度晶界逐渐向小角度晶界转变,孪晶界的比例逐渐增加。随着冷变形量的增加,局部取向差的平均值(■)升高,位错密度增加;同时,晶粒变形均匀性逐渐变好,应力集中分布逐渐向应力均匀分布转变。随着冷变形量的增加,其形变织构的类型基本保持不变,而具有稳定取向的Copper织构{112}111的强度略有降低;同时,由不均匀变形产生的Rotated-cube织构{001}110的强度降低;此外,形变孪晶的形成导致Goss织构{110}001和Brass-R织构{111}112的强度降低。  相似文献   

11.
采用电子背向散射衍射技术研究了镍基高温合金冷变形和再结晶退火过程中的组织演变、晶界特征分布、应变分布及织构演变规律。结果表明,当冷变形量较小(ε≤45%)时,晶粒沿着轧制方向被拉长,呈扁平状于基体中均匀分布,应力主要集中在晶界和孪晶界(TB)附近,大角度晶界(HAGBs)和TBs逐渐向亚晶界(Sub-GBs)和小角度晶界(LAGBs)转变。同时,出现Goss织构 {110}<001>、Brass-R织构{111}<112>、Twinned-Copper织构{552}<115>和Copper织构{112}<111>。当轧制压下量超过70%时,晶粒形状逐渐从扁平变为纤维状,晶粒的变形均匀性逐渐变好,应变分布变得均匀,LAGBs开始占主导地位。同时,织构类型保持不变,但织构强度增加。在1120 ℃退火15 min后,孪晶的长度分数随着轧制压下量的增加而增加。同时,变形织构转变为再结晶织构,织构类型增加,但织构强度减弱。此外,当退火孪晶的比例增加时,Copper织构{112}<111>不断向Twinned-Copper织构{552}<115>转变,并且经过30%~80%轧制变形的试样产生织构{124}<211>。  相似文献   

12.
利用喷射沉积技术制备Mg-9Al-3Zn-1Mn-6Ca-2Nd合金沉积坯,对其进行挤压预变形和二次轧制变形(T=350℃、ε=0.05、0.1、0.15和0.2),重点研究二次轧制变形过程对尺寸不对称挤压坯中织构演变的影响。结果表明:镁合金板材在350℃轧制变形,随着轧制变形程度(ε=0.05、0.1、0.15和0.2)增大实现了形变织构的随机化,挤压坯初始织构类型与(Ca,Nd)Al2粒子综合作用是导致基面织构{0002}、柱面织构{10 10}及锥面织构{10 13}全面启动的主要原因。  相似文献   

13.
通过控制每道次的轧制压下量,获得了两组轧制变形区形状参数,对高纯钽板进行周向轧制,得到了70%变形量的样品,并对样品进行了真空退火处理(1050℃/1 h)。应用X射线衍射(XRD)技术测量了轧制样品表面层与中间层的宏观织构,结合背散射电子衍射(EBSD)技术表征了轧制样品沿厚度方向上的变形组织与微织构,以及退火态样品的显微组织与织构。结果表明:大的变形区形状参数(2.01~3.29)在轧板表面引入了明显的剪切应变,沿钽板厚度方向易产生严重的织构梯度,钽板表面层形成{hkl}<110>织构以及{100}织构,中间层形成强烈的{111}织构。较小的变形区形状参数(1.67~2.28)有利于产生均匀变形,可以有效弱化中间层的{111}织构,增强{100}织构。轧制组织中增强的{100}织构可以抑制{111}取向再结晶晶粒的异常长大,对细化显微组织有利。  相似文献   

14.
利用光学显微镜、扫描电镜分析了不同冷轧变形量对Al-Mg-Si合金显微组织和微观织构的影响。结果表明:随着变形量的增加,再结晶织构Cube{001}<100>会经由Goss{011}<100>逐渐演变为以Copper{112}<111>和S{123}<634>为主要取向的形变织构,而Goss{011}<100>的体积分数表现为先增大后减小的趋势;合金形变带织构主要由强度较高的Copper{112}<111>织构和强度较弱的Cube{001}<100>织构组成;当变形量小于20%时,晶粒主要取向为{001}、{012},变形量大于40%时,{011}、{112}、{123}成为主要的晶粒取向。  相似文献   

15.
《锻压技术》2021,46(9):163-168
铝合金冷成形过程中的各向异性影响了后续焊接时的装配间隙,进一步影响了焊接质量。针对此问题,通过单晶分析法研究了7050铝合金板材冷变形时的厚向各向异性和面内各向异性。研究结果表明,沿轧制方向拉伸时,宽度方向的变形能力小于厚度方向的变形能力;当拉伸方向为宽度方向时,轧制方向和厚度方向的变形能力基本相同;变形方向对7050铝合金板材各力学性能的面内各向异性影响不大。7050铝合金板材塑性变形时存在的各向异性主要是由生产过程中形成的Brass{110}112织构所致。当铝合金中主要含Brass{110}112织构时,可通过控制轧板的下料部位,使其后续主要沿宽度方向受力变形,以减少塑性成形过程中的各向异性和提高焊接质量。  相似文献   

16.
张德芬  胡卓超  王福  左良 《轻金属》2004,27(1):53-57
应用取向分布函数 (ODF)研究和分析了冷轧 3 0 0 4铝合金的形变织构和不同工艺退火后的再结晶织构。结果表明 :3 0 0 4铝合金 70 %~ 95 %冷轧形变范围内 ,形变织构均由C{112 }〈111〉、B{110 }〈112〉、S{12 3 }〈63 4〉织构组分组成 ,其中B{110 }〈112〉、S{12 3 }〈63 4〉织构组分强度变化不大 ,C{112 }〈111〉织构组分强度随形变量的增加而增大 ,当形变量增加到 90 %~ 95 %以后 ,其取向密度基本稳定在 7级。冷轧形变量对 3 0 0 4铝合金再结晶织构有明显影响 ,形变量在 80 %~ 90 %范围时 ,再结晶织构均由强的立方织构和弱的冷轧织构组成 ;70 %形变时 ,再结晶织构中立方织构{0 0 1}<10 0 >、R/S{12 4}<2 11>织构、S{12 3 }〈63 4〉织构和C{112 }〈111〉织构组分强度均较弱 ;95 %形变时 ,再结晶织构则由强的冷轧织构和较弱的立方织构组成。预回复 (相当于慢速加热 )具有增强立方织构的作用 ;快速加热则相反。  相似文献   

17.
《上海金属》2021,43(1)
研究了中间退火对5052铝合金板材组织与性能的影响。对合金的拉伸性能及显微硬度进行测试,使用扫描电镜(SEM)对合金的断口形貌进行观察,使用金相显微镜及X射线衍射仪(XRD)对合金的显微组织和宏观织构进行分析。结果表明:经过中间退火的5052铝合金板材的屈服强度比直接轧制的低10 MPa左右,晶粒尺寸大约82%。中间退火试样不同方向的断后伸长率差别不大,而直接轧制试样的轧向较45°和90°方向的断后伸长率小9%,具有明显的各向异性。拉伸变形后中间退火试样晶粒沿最大切应力方向呈明显的流变特征,断口处韧窝发达、分布更均匀。中间退火试样的{100}001 Cube织构和{100}011 H织构等再结晶织构更强,而直接轧制试样的B织构{110}112和Goss织构{110}001等轧制织构更强。经中间退火的板材各向异性得到明显改善。  相似文献   

18.
采用ODF法(晶体取向分布函数法)研究和分析了润滑剂对高纯铝冷轧形变织构的影响,揭示了两种润滑条件下形变织构的演变规律。结果表明:大冷轧变形程度下,采用机油润滑,形变织构为典型的面心立方金属的轧制织构,即由强的B-、Cu-及S-织构组分构成,而且取向分布的密度峰值处在S-取向位置;煤油润滑时轧制织构相对较弱,但Cu织构最强,同时产生了明显的剪切织构{001}<110>(Rot.Cube-织构)。采用机油润滑时,轧制变形比较均匀。低变形轧制时晶粒取向聚集于α线,随变形量的增加,向β线取向聚集,大变形量下最终形变织构为铜型轧制织构;而煤油粘度小,轧制过程中接触表面摩擦因数较大,不均匀变形严重,低轧制程度时发现有表面剪切Rot.Cube-织构,随着塑性变形的增大,Rot.Cube-织构逐渐向Cu-取向转化;变形至95%后,随着变形程度的增加,S-织构减弱。  相似文献   

19.
通过显微硬度、拉伸性能测试、显微组织分析、扫描电镜分析以及背散射电子衍射分析,研究了室温与液氮控温80%轧制变形对Al-Sc合金组织及力学性能的影响。结果表明:室温轧制与液氮控温轧制后合金的硬度分别为105 HV0.3和162 HV0.3,抗拉强度、屈服强度、伸长率分别为335 MPa、296 MPa、5.5%和443 MPa、415 MPa、6.7%;轧制后合金中多为小角度晶界,室温与液氮控温轧制后平均晶粒尺寸分别为40 μm和1 μm;由于层错能的影响,合金液氮控温轧制之后的主要织构类型为Brass织构{110}<112>、S织构{123}<634>和 Copper织构{112}<111>。  相似文献   

20.
利用X射线衍射技术研究冷拔+中间退火2169N奥氏体不锈钢管材的织构转变,及其对管材扩口性能的影响。结果表明,2169N钢的层错能为27.7M·J/m2,属低层错能级别,变形方式为机械孪生。管材存在{113}<121>主织构组分、{111}和{110}<001>次织构组分。{110}<001>织构为管材冷拔时产生,{110}<001>和{111}织构为管材中间退火转变而成,{113}<121>织构为{110}<112>经<111>旋转约40°转变生成。管材{113}<112>主织构组分、{111}和{110}<001>次织构组分均表现出较高的R值,不利于管材厚度方向塑性变形,影响扩口工艺性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号