首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiments were carried out to investigate the flow pattern, average void fraction, and pressure drop of an upward air‐water two‐phase flow in vertical tubes of 25‐mm inside diameter with wire coils of varying wire diameter, pitch, and number of coils in cross section. Five kinds of flow patterns—bubble, slug, churn, semiannular, and annular flow—were defined based on the observation of flow behavior in the experiments. At higher water flowrates, the bubble‐to‐slug transition occurred at lower air flowrates in tubes with wire coils than in smooth tubes. The average void fraction was found by using the drift flux model. Further, the experimental results of the friction pressure drop were compared with the Lockhart‐Martinelli correlation. As a result, a correlation with the constant C in Chisholm's equation was obtained as a function of the wire coil pitch‐to‐diameter ratio. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(8): 639–651, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10066  相似文献   

2.
Experiments have been performed for turbulent channel flow obstructed with a flat body. The local heat transfer coefficient and the wall static pressure were measured on two kinds of flat bodies for which the trailing edge shape differed. The length of the body, the thickness of the body, and the distance between the wall and the body were changed in several steps. The total performance between heat transfer and pressure drop was estimated under conditions of equal pumping power. The total performance hardly changed, even if the trailing edge shape and length of the bodies were different. The averaged heat transfer coefficient increased with increasing thickness of the bodies. However, as the friction factor increased, the performance became worse. When a comparatively thin body was installed near the heating surface, good performance was obtained. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(4): 354–366, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10100  相似文献   

3.
Heat transfer enhancement and pressure drop increasing during evaporation of R-134a due to the presence of coiled wire insert inside a horizontal evaporator was studied experimentally. The test evaporator was an electrically heated copper tube of 1200 mm length and 7.5 mm inside diameter. Helically wire coils with different wire diameters of 0.5, 0.7, 1.0 and 1.5 mm and different coil pitches of 5, 8, 10 and 13 mm were made and used in full length of the test evaporator. For each inserted tube and also the plain tube, several test runs were carried out with different mass velocities and heat fluxes. From analysis of acquired data, it was found that the coiled wire inserts enhance the heat transfer coefficient but with a higher penalty due to the increasing of pressure drop, in comparison to that for the plain flow. An empirical correlation has been developed to predict the heat transfer coefficient during evaporation inside a horizontal tube in the presence of a coiled wire insert.  相似文献   

4.
In recent years the requirement for reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods of improving thermal efficiency by recovering latent heat. This paper described the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having a wing fin (fin pitch: 4 mm, fin length: 65 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of heat exchanger, and the heat transfer coefficient between outer fin surface and gas. The effects of condensate behavior in the fins on heat transfer and pressure loss characteristics were clarified. Furthermore, the equations for predicting the heat transfer coefficient and pressure loss which are necessary in the design of the heat exchanger were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 215–229, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20154  相似文献   

5.
We have studied the enhancement of heat transfer by vortex generators. Experiments were performed on rectangular‐type vortex generators mounted on a parallel‐plate heater, and the heat transfer coefficient of the heater surface and pressure drop in the duct were measured. These measurements indicated that a rectangular vortex generator (called a double‐inclined winglet), with inclination angle of the vortex generator surface to the heater surface (β) at 60°, and the attack angle to the flow direction (γ) at 45°, maximizes the local Nusselt number of the heater surface. It was also found that a group of double‐inclined winglets has an optimal arrangement in a winglet array, longitudinal pitch and transverse pitch, that maximizes the ratio [Colburn's dimensionless heat transfer coefficient JH]/[friction factor f]. The results of numerical calculations showed that the double‐inclined winglet was superior to the conventional rectangular vortex generator in heat transfer. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(3): 253–267, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10089  相似文献   

6.
In recent years, the requirement for the reduction of energy consumption has been increasing to solve the problems of global warming and the shortage of petroleum resources. A latent heat recovery type heat exchanger is one of the effective methods for improving thermal efficiency by recovering latent heat. This paper describes the heat transfer and pressure loss characteristics of a latent heat recovery type heat exchanger having straight fins (fin length: 65 mm or 100 mm, fin pitch: 2.5 mm or 4 mm). These were clarified by measuring the exchange heat quantity, the pressure loss of the heat exchanger, and the heat transfer coefficient between the outer fin surface and gas. The effects of fin length and fin pitch on heat transfer and pressure loss characteristics were clarified. Furthermore, equations for predicting the heat transfer coefficient and pressure loss which are necessary for heat exchanger design were proposed. ©2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(4): 230– 247, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20153 Copyright © 2004 Wiley Periodicals, Inc.  相似文献   

7.
An experimental study has been carried out to clarify the characteristics of the void fraction and the liquid film thickness of the air‐water two‐phase flow in vertical tubes of 25‐mm inside diameter with wire coils of varying wire diameter and pitch. The flow pattern in the experiment on the average void fraction and the local void fraction distribution in cross section was a bubble flow, and the liquid film thickness was in the region of semiannular and annular flows. It is clarified from these experiments that the average void fraction in tubes with wire coils is lower than that in a smooth tube and decreases with the wire diameter owing to the centrifugal force of the swirl flow which concentrates bubbles at the center of the tube, that the local liquid film thickness becomes more uniform with a decrease in the pitch of the wire coil, and that the liquid film becomes thicker after the passage through the wire coil with an increase in the wire diameter. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(8): 652–664, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10067  相似文献   

8.
Heat transfer between the inner and the outer rings of an angular ball bearing is investigated experimentally and heat transport by balls is analyzed theoretically. The bearing used is lubricated by oil and rotated in the range from 600 to 4000 rpm. Considering heat generation by friction, the net heat flow between the rings is evaluated. The results show that balls are the dominant heat carrier and their conductance depends on rotational speed and thrust force. The other heat transfer route is supposed mainly to be between the rings based on the fact that its heat flow rate depends on the rotational speed. © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(1): 42–57, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10070  相似文献   

9.
Heat exchangers are extensively used in various industries. In this study, the impact of geometric and flow parameters on the performance of a shell and double helical coil heat exchanger is studied numerically. The investigated geometric parameters include external coil pitch, internal coil pitch, internal coil diameter, and coil diameter. The influences of considered geometrical parameters are analyzed on the output temperature of the hot and cold fluid, convective heat transfer coefficient, pressure drop, and average Nusselt number. Water is considered as working fluid in both shell and tube. As an innovation, double helical coils are used instead of one in the heat exchanger. To compare the obtained results accurately, in each section, the heat transfer area (coil outer surface) is kept constant in all models. The results show that the geometrical parameters of double helical coils significantly affect the heat transfer rate.  相似文献   

10.
The axial and radial variation of the heat transfer coefficient in a circulating fluidized bed riser column, and the effect of operating parameters thereon, are investigated. The experimental set-up consists of a riser column of 102 mm×102 mm in bed cross-section, 5·25 m in height with a return leg of the same dimensions. The unit is fabricated with plexiglass columns of 0·6 m in length which are interchangeable with one another. Two axial heat transfer test sections of 102 mm×102 mm in cross-section, 500 mm in height, and made of mild steel, are employed for the axial heat transfer study and one horizontal tube section of 22·5 mm OD made of mild steel is employed for the radial heat transfer study. The primary air velocity is varied between 4·21 and 7·30 m s−1. Local sand of mean size (dp) 248 μm is used as the bed material. One empirical model with the help of dimensional analysis has been proposed to predict the heat transfer coefficient to a bare horizontal tube in a CFB riser column and the model results are validated with the experimental data; good agreement has been observed. © 1997 John Wiley & Sons, Ltd.  相似文献   

11.
An enhancement technique is developed for natural convection heat transfer from a vertical heated plate with inclined fins, attached on the vertical heated plate to isolate a hot air flow from a cold air flow. Experiments are performed in air for inclination angles of the inclined fins in the range of 30° to 90° as measured from a horizontal plane, with a height of 25 to 50 mm, and a fin pitch of 20 to 60 mm. The convective heat transfer rate for the vertical heated plate with inclined fins at an inclination angle of 60° is found to be 19% higher than that for a vertical heated plate with vertical fins. A dimensionless equation on the natural convection heat transfer of a vertical heated plate with inclined fins is presented. © 2007 Wiley Periodicals, Inc. Heat Trans Asian Res, 36(6): 334–344, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.20168  相似文献   

12.
An enhancement technique was developed for natural convection heat transfer from a tall, vertical heated plate to water. Rectangular grid fins attached to the base plate were utilized as a heat transfer promoter. These grid fins redirect the high‐temperature fluid ascending along the base plate toward the outside of the boundary layer and introduce the low‐temperature ambient fluid toward the base plate instead. The heat transfer coefficients of thus‐treated surfaces were measured and compared with a nontreated surface and a surface with conventional vertical plate‐fins. The highest performance was achieved for the experimental surfaces. In particular, the experimental surfaces with 5‐mm‐high, nonconducting grids and with 10‐mm‐high, conducting grid fins show 27% and 80% higher heat transfer coefficients compared to the turbulent heat transfer coefficients of the nontreated surface, respectively. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(2): 178–190, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10083  相似文献   

13.
In the present study, the loop heat pipe (LHP) was miniaturized for application to electronic cooling. According to the capillary limitation, the wick structure parameters that would affect the heat transfer capacity were analyzed theoretically. Among the various wick parameters, this study especially investigated the effect of wick thickness, which has rarely been mentioned in the literature. Here, various thicknesses were analyzed theoretically and then tested experimentally. The results showed that the temperature on the evaporator wall dropped with decreasing wick thickness. This effect would lead to the raising of heat transfer capacity and the descending of thermal resistance. According to the analysis and the practical demand for electronic cooling, a miniature LHP was fabricated with the evaporator outer diameter of 13 mm and the evaporator length of 50 mm. The testing results showed that, at the allowable working temperature of 80 °C, the maximum heat transfer capacity was up to 200 W and the thermal resistance was 0.17 °C/W. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 33(1): 42–52, 2004; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10133  相似文献   

14.
Boiling heat transfer characteristics of nitrogen were experimentally investigated in a stainless steel plain tube and wire coil inserted tubes. Wire coils having different coil pitches and wire thicknesses were inserted into a horizontally positioned plain tube, which had an inner diameter of 10.6 mm and a length of 1.65 m. The coil pitches were 18.4, 27.6, and 36.8 mm, and the wire thicknesses were 1.5, 2.0, and 2.5 mm. Tests were conducted at a saturation temperature of −191 °C, mass fluxes from 58 to 105 kg/m2 s, and heat fluxes from 22.5 to 32.7 kW/m2. A direct heating method was used to apply heat to the test tube. The boiling heat transfer coefficients of nitrogen significantly decreased when the dryout occurred. Enhancement performance ratio (EPR), which is the ratio of heat transfer enhancement factor to pressure drop ratio, was used to evaluate the performance of the wire coil inserts. The maximum heat transfer enhancement of the wire coil inserted tubes over the plain tube was 174% with wire 3 having a twist ratio (p/Dw) of 1.84 and a thickness ratio (t/Dw) of 0.25. Wire 3-inserted tube showed the highest EPR among the tested tubes in this study.  相似文献   

15.
The effect of an inclination angle on the natural convection heat transfer from an inclined heated plate with rectangular grids is investigated. Heat transfer coefficients are measured in air when the plates are inclined at angles from ?30 to +60 from a vertical plane, grid heights are in the range of 5 to 10 mm, and diagonal lengths of the grid are 25, 50, 100, and 200 mm. For each configuration, the surface heat flux ranges from 50 to 200 W/m2. It is found that the rectangular grids increase local heat transfer coefficients when the grids are applied to an inclined plate. The rectangular grids increase the average heat transfer coefficients along the horizontal centerline of the plate by up to 20% compared to those coefficients of a smooth plate, even when the angles of inclination are ±30° © 2002 Wiley Periodicals, Inc. Heat Trans Asian Res, 31(5): 408–419, 2002; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10043  相似文献   

16.
Heat regenerators transfer heat from one gas to another, with an intermediate storage in solids. The heat transfer surface for gas flow application should provide at the same time high surface area and low friction factor. Three geometries of heat transfer surface, monolith, stack of woven screens and bed of spheres, have been compared. Their performance was evaluated from the pressure drop of the heat regenerator working at a given heat transfer efficiency. The comparison was performed using numerical simulation and published measurements of heat transfer and flow friction characteristics. By adjusting the length and the period of the exchanger, it is possible to obtain the same heat transfer efficiency with the three geometries. Beds of spheres give very short and compact heat regenerators, working at high pressure drop. At the opposite, monoliths form long regenerators working at low pressure drop. Stacks of woven screens cover a wide range of performance: low porosity woven screens give high heat transfer efficiency and high pressure drop, while high porosity woven screens offer performance similar to that of the monoliths. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

17.
Heat transfer improvement in a water wall tube with fins was investigated in a circulating fluidized bed (CFB) boiler. Experiments were first conducted in a 6 MWth CFB boiler then a model was developed to analyse and interpolate the results. Temperatures at some discrete points within the wall cross‐section of the tube were measured by burying 0.8 mm thermocouples within a tube. Experimental data showed an increase in heat absorption up to 45 per cent. A good agreement between measured and predicted values was noted. The distribution of temperature in the metal wall and of heat flux around the outer wall of a tube with longitudinal and lateral fins was analysed by numerical solution of a two‐dimensional heat conduction equation. Effects of bed‐to‐wall heat transfer coefficient, water‐to‐tube inside heat transfer coefficient, bed temperature, water temperature and thermal conductivity of the tube material on the heat flux around the water tube are discussed. The present work also examines the influence of the length of the longitudinal fin and the water tube thickness. Heat flux was highest at the tip of the longitudinal fin. It dropped, but increased again near the root of the lateral fin. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Natural convective flows of air around large horizontal cylinders were investigated experimentally. The main concerns were the turbulent transition mechanisms and the heat transfer characteristics of turbulent flows. The cylinders were heated with uniform heat flux and their diameters were varied from 200 to 1200 mm to enable experiments over a wide range of modified Rayleigh numbers, RaD* = 1.0 × 108 to 5.5 × 1011. The flow fields around the cylinders were visualized with smoke to investigate the turbulent transition mechanisms. The results show that three‐dimensional flow separations occur first at the trailing edge of the cylinder when RaD* exceeds 3.5 × 109, and the separation points shift upstream with increasing Rayleigh numbers. These separations become a trigger to the turbulent transition and transitional and turbulent flows appear downstream of the separations at higher Rayleigh numbers. However, they occupy a relatively small portion of the cylinder surfaces even at the maximum Rayleigh numbers of the present experiments. The local heat transfer coefficients were also measured. The results show that the coefficients are increased significantly in the transitional and turbulent regions compared with the laminar coefficients. Moreover, the present results for air were compared with previous results for water and the effects of Prandtl number on the flow and heat transfer were discussed. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(4): 293–305, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10080  相似文献   

19.
The realization of a compact and efficient air‐cooled absorber is the key technology for the small‐capacity absorption refrigerator for domestic use. A vertical pipe with absorbent flowing inside and air flowing outside is the best choice for the air‐cooled absorber due to the easy addition of fins to enhance heat transfer on the air side. In this paper, first, the modeling of the absorption process in the vertical pipe for a constant heat transfer coefficient on the outer surface is described. Then, experimental results are presented for pipes of inner diameters 8 to 26 mm, pressure 5 and 6 mm Hg, and outer surface heat transfer coefficient 2000 and 3300W/(m2·K). It was found that for pipes of diameter 13 mm or more, the absorption process is well estimated by the proposed model. The absorption with addition of surfactant is estimated by the pseudo‐turbulent method. The necessary heat transfer area for the air‐cooled condition is about three times that for the water‐cooled condition. © 2003 Wiley Periodicals, Inc. Heat Trans Asian Res, 32(8): 740–752, 2003; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/htj.10128  相似文献   

20.
In the present study, the heat transfer characteristics and the pressure drop of the horizontal double pipe with coil-wire insert are investigated. The inner and outer diameters of the inner tube are 8.92 and 9.52 mm, respectively. The coiled wire is fabricated by bending a 1 mm diameter of the iron wire into a coil with a coil diameter of 7.80 mm. Cold and hot water are used as working fluids in the shell side and tube side, respectively. The test runs are performed at the cold and hot water mass flow rates ranging between 0.01 and 0.07 kg/s, and between 0.04 and 0.08 kg/s, respectively. The inlet cold and hot water temperatures are between 15 and 20 °C, and between 40 and 45 °C, respectively. The effect of the coil pitch and relevant parameters on heat transfer characteristics and pressure drop are considered. Coil-wire insert has significant effect on the enhancement of heat transfer especially on laminar flow region. Non-isothermal correlations for the heat transfer coefficient and friction factor are proposed. There is reasonable agreement between the measured data and predicted results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号