首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
TWIP钢的显微组织与变形机制研究   总被引:2,自引:0,他引:2  
采用金相、X射线衍射、扫描电镜和透射电镜等方法对两种不同Mn含量应变诱发孪晶(TWIP)钢拉伸前后的显微组织进行了研究.结果表明,Fe-15Mn-3Si-3Al钢的塑性增长机理主要是),γrcc→εhcp,γfcc→εhcp→αbcc相变诱发的TRIP效应;Fe-25Mn-3Si-3Al钢主要的塑性增长机制是孪晶诱发的TWIP效应.Fe-25Mn-3Si-3Al钢拉伸后有些奥氏体晶粒内存在两个或多个孪晶系统,孪晶界与原始奥氏体晶界都会阻碍孪晶的长大.层错能强烈影响TWIP钢的变形机制,随着Mn含量的增加,层错能不断增加,孪晶强化逐渐起主导作用.  相似文献   

2.
淬火-碳分配-回火钢的低温组织和性能   总被引:1,自引:0,他引:1  
Fe-0.25C-1.5Mn-1.2Si-1.5Ni-0.05Nb(质量分数,%)钢通过淬火-碳分配-回火(Q-P-T)工艺抗拉强度可达1250 MPa以上兼具良好塑性(大于17%),显微组织为位错型板条马氏体、微合金碳化物和薄片状残留奥氏体。通过低温拉伸试验分析了Q-P-T钢在-85~25℃下的力学性能并采用透射电镜观察了试样在25℃和-85℃时拉伸前后的显微组织。结果表明,Q-P-T钢在-70~25℃时显示了良好的低温力学性能,仅当拉伸温度低于-70℃时试样塑性开始出现大幅下降;残留奥氏体在未变形前具有良好的低温稳定性,但在变形过程中会发生马氏体相变,产生相变诱发塑性(TRIP)效应,这是Q-P-T钢具有高强度和良好塑性的主要原因。  相似文献   

3.
采用光学显微镜、扫描电子显微镜、X射线衍射仪、透射电子显微镜及拉伸试验机等,研究了3种成分的中锰轻质钢在不同变形量(0~30%)时的组织演化和力学性能,并分析了其拉伸行为和变形机制。结果表明:3种试验钢的显微组织均由铁素体和奥氏体两相组成,力学性能良好,其强塑积均超过了30 000 MPa·%。在拉伸变形过程中,锰含量较低的Fe-3. 67Mn-4. 99Al-0. 28C钢中奥氏体含量随着变形量的增加而降低,发生了奥氏体向α’马氏体的渐进式转变,即产生了TRIP效应;锰含量较高的钢在变形过程中发生了TWIP效应,使其具有较好的塑性。Fe-10. 46Mn-5. 14Al-0. 24C钢中还发生了奥氏体向ε马氏体的转变,该转变显著发生在变形量10%~30%之间; Fe-11. 38Mn-5. 36Al-0. 87Cr-0. 52C钢中未发生相变,变形过程中观察到的高密度位错墙可能是其强度较高的原因之一。  相似文献   

4.
利用相变热力学模拟计算,扫描电镜(SEM),X射线衍射仪(XRD),拉伸试验机等设备系统研究了不同退火工艺下0.2C-5Mn-1.5Al中锰TRIP钢的相变特点及组织性能,通过与不添加Al的0.2C-5Mn中锰TRIP钢进行比较,研究了Al对相变规律及工艺与组织性能的影响规律。结果表明:Al添加提高并扩大了临界区温度范围,使得中锰钢可以选择更高的临界退火温度,这有助于加快奥氏体逆相变过程,缩短退火时间;同时Al的添加促进了C,Mn元素的聚集,有效提高了残留奥氏体含量,增强了变形过程中的TRIP效应;随着退火温度的升高,0.2C-5Mn-1.5Al钢的奥氏体含量及伸长率均表现为先增加后减少的趋势,而屈服强度略微下降,拉伸强度持续增加,在760 ℃退火3 min时获得最佳的力学性能:伸长率为32%,强塑积为35 GPa·%,Al的添加有效提高了0.2C-5Mn中锰TRIP钢的综合力学性能。  相似文献   

5.
采用OM、EBSD、TEM、XRD和拉伸实验等方法,研究了γ-奥氏体/ε-马氏体双相Fe-19Mn-0.0017C(质量分数,%)合金在拉伸变形过程中的组织演变和加工硬化行为。结果表明,Fe-19Mn发生了变形诱导马氏体相变,并且随着变形量的增加,相变过程由以γ→ε相变为主转变为以ε→α'相变为主。对比分析加工硬化率的变化与相含量的变化,表明ε→α'相变比γ→ε相变具有更高的加工硬化能力。同时,在变形过程中,ε-马氏体不仅发生了位错滑移,还形成了■孪晶,以满足ε-马氏体的变形协调。在γ→ε和ε→α'双重相变引起的相变诱导塑性(TRIP)效应、γ-奥氏体/ε-马氏体/α'-马氏体中的位错滑移,以及ε-马氏体的孪生变形等机制的共同作用下,Fe-19Mn的抗拉强度和总延伸率分别达到722 MPa和31%,显示出良好的强塑性匹配。  相似文献   

6.
对Fe-23.8Mn-0.4C-3.7Cr高锰奥氏体钢进行50%冷变形,利用光学显微镜(OM)、X射线衍射仪(XRD)、扫描电镜(SEM)、透射电镜(TEM)、维氏硬度计、纳米硬度计和万能试验机等研究了冷变形对高锰奥氏体钢组织和力学性能的影响。结果表明:高锰奥氏体钢冷变形前后的微观组织均为奥氏体组织,但变形后晶粒内部产生了大量变形孪晶;变形后高锰奥氏体钢的硬度和强度大幅度提高,冷变形也导致其应变硬化行为和断裂行为发生改变,塑性显著下降。  相似文献   

7.
以5×10-4s-1(慢速拉伸)和2×10-2 s-1(快速拉伸) 2种应变速率对EN1.4318(AISI301L)和EN1.4301(AISI304)冷轧和退火态奥氏体不锈钢板试样(厚度为2 mm)进行了拉伸实验,用TEM,SEM以及XRD分析应变诱发α'-马氏体转变机制和转变量.结果表明,相同应变速率拉伸时,EN1.4318钢的α'-马氏体转变量远远高于EN1.4301钢;快速拉伸可明显抑制冷轧EN1.4318钢中α'-马氏体的转变速率,降低硬化率.在均匀变形阶段,2种钢中α'-马氏体的转变速率和转变量比慢速拉伸时有不同程度地下降,而且冷轧比退火态更显著.奥氏体稳定性较高的EN1.4301钢,常温拉伸α'-马氏体转变饱和值低于0.3(体积分数),增强效果小,快速拉伸导致较快发生塑性失稳和均匀延伸率大幅降低;而对于层错能低、α'-马氏体饱和值很高的EN1.4318钢,快速托伸则使抗拉强度大幅降低,而且下降的幅度随α'-马氏体饱和值增加而增大;EN1.4318钢的应变速率敏感性远大于EN1.4301钢.  相似文献   

8.
利用冲击实验、拉伸实验、XRD和TEM对2种不同N含量的无Ni高N奥氏体不锈钢低温变形行为进行了研究.结果表明,高N奥氏体不锈钢在低温下发生明显的韧脆转变和加工硬化现象.在实验材料的Mn含量水平内,提高Mn含量能够改善高N奥氏体不锈钢的低温塑性和韧性,降低其韧脆转变温度.18Cr-12Mn-0.55N钢在低温拉伸变形时会发生形变诱导马氏体相变,但马氏体转变量很少,降低温度对马氏体转变量无明显影响.形变诱导马氏体能提高高N奥氏体不锈钢的加工硬化能力,但降低了钢的低温塑性和韧性.加工硬化能力和层错能随温度的降低而降低是Re-Cr-Mn高N奥氏体不锈钢在低温下发生脆断的主要原因.  相似文献   

9.
 借助于X射线衍射,研究了C、Mn、Cr和Ni 含量对304奥氏体不锈钢拉伸力学性能和应变诱发 马氏体相变倾向的影响。结果表明:C、Mn、Cr和Ni在允许的成分范围内变化,应变诱发α′马氏体相变倾向差异很大,这导致屈服强度和抗拉强度复杂的变化,尽管应变诱发α′马氏体相变使加工硬化速率提高,相变可以诱发塑性,但相变速率较快,相变倾向较大的钢塑性反而下降,此外,由于室温变形还增大热诱发马氏体相变倾向,从而限制了C、Mn、Cr和Ni下限钢在高精度和低温环境下构件的应用。  相似文献   

10.
借助于C射线衍射,研究了C、Mn、Cr和Ni含量对304奥氏体不锈钢拉伸力学性能和应变诱发马氏体相变倾向的影响。结果表明:C、Mn、Cr和Ni在允许的成分范围内变化,应变诱发α’马氏体相变倾向差异很大,这导致屈服强度和抗拉强度复杂的变化,尽管应变诱发α’马氏体相变使加工硬化速率提高,相变可以诱发塑性,但相变速率较快,相变倾向较大的钢塑性反而下降,此外,由于室温变形还增大热诱发马氏体相变倾向,从而限制了C、Mn、Cr和Ni下限钢在高精度和低温环境下构件的应用。  相似文献   

11.
304奥氏体不锈钢热诱发马氏体相变研究   总被引:1,自引:0,他引:1  
借助X射线衍射技术,研究了304奥氏体不锈钢热诱发马氏体相变倾向.结果表明:C、Mn、Cr和Ni接近标准规范下限,304不锈钢的稳定性急剧下降,致使液氮内冷却后接近1/3的奥氏体转变为α'或ε马氏体,室温拉伸即形成应变诱发ε和α'马氏体,而且较小的室温变形显著增大随后液氮内冷却的热诱发α'马氏体相变倾向,但随室温预应变增大快速形成应变诱发α'马氏体,致使随后在液氮内发生热诱发α'马氏体倾向下降.此外,研究表明ε马氏体的形成及消失与α'马氏体的累积量有关.  相似文献   

12.
张维娜  刘振宇  王国栋 《轧钢》2010,27(1):20-23
研究了采用双辊铸轧技术生产的高锰TRIP钢(Fe-15Mn-3Si-3Al)薄带经冷轧和退火处理后的显微组织和力学性能,结果表明,该薄带的断裂总伸长率达21.5%(相当于传统工艺的91.5%),抗拉强度达875MPa(相当于传统工艺的89.3%);拉伸变形后约有5%的亚稳态奥氏体转变为板条马氏体,且内部存在大量位错,有效提高了钢的加工硬化能力。  相似文献   

13.
采用扫描电镜、准原位电子背散射衍射(EBSD)、X射线衍射和室温拉伸实验,研究了冷轧Fe20Mn0.3C钢在700~1000℃范围内退火1 h后的微观组织及其拉伸变形行为。结果表明,随着退火温度升高材料的屈服强度逐渐降低,而抗拉强度及伸长率则先升高后降低,当退火温度为800℃时,抗拉强度和伸长率达到峰值。800℃退火试样形成了均匀细小且非常稳定的奥氏体晶粒组织,其拉伸变形机制主要为孪生诱导塑性(TWIP效应);当退火温度进一步升高,奥氏体晶粒长大,其稳定性降低,空冷及拉伸过程中均发生马氏体相变,形变机理由TWIP效应转为相变诱导塑性(TRIP效应)。准原位拉伸EBSD研究表明:在拉伸变形过程中,退火试样中的淬火ε马氏体一方面通过γ→ε形式的TRIP效应增厚,另一方面通过ε→α'形式的TRIP效应转变成α'马氏体,而裂纹容易在α'马氏体界面形核扩展,因此,淬火ε马氏体越多,材料的伸长率越低。  相似文献   

14.
本文采用层错能估算和相图计算的方法,通过增C降Mn的成分优选,设计了Fe-18Mn-0.528Si-0.6C(质量分数,%)实验钢,研究表明,该钢种在室温拉伸变形时会发生γ→ε相变.借助OM,XRD和TEM对热轧实验钢板室温拉伸性能测试前后的组织进行了分析与研究,结果表明:经过1100℃开轧,850℃终轧后空冷的热轧钢板由于孪晶诱发塑性(TWIP)+相变诱发塑性(TRIP,γ→ε)双重效应的作用,实现了抗拉强度超过1 GPa,延伸率大于60%的优良性能,达到了第三代汽车用钢的要求;淬火ε马氏体和应力诱发ε马氏体的存在会导致力学性能下降.  相似文献   

15.
研究了临界热处理工艺对基于奥氏体逆相变原理设计的Fe-0.1C-2.5Mn-0.6Ni低合金TRIP钢组织与力学性能的影响。结果表明:试验钢经两相区临界退火仅能获得少量的残留奥氏体,且残留奥氏体含量随着退火温度的升高呈现先增加后降低的趋势,740℃退火后钢中的残留奥氏体含量最高。试验钢临界退火后在高温回火处理过程中马氏体会通过逆相变转变成奥氏体,使得钢中的残留奥氏体含量大幅提高。680℃回火后,试验钢中的残留奥氏体含量达到最大值10.4%,钢的塑性和韧性由于相变诱发塑性(TRIP)效应而显著提高。与传统TRIP钢相比,本文研究的TRIP钢更适合于厚板材、厚壁管材的生产制造。  相似文献   

16.
不同应变率下 TRlP钢的拉伸性能   总被引:2,自引:0,他引:2  
在自制气动式间接杆杆型冲击拉伸试验机上对含1.6Si-1.58Mn-0.195C的TRIP(Transformation-induced Plasticity)钢在不同应变率下的高速冲击拉伸性能进行了研究,并和静态拉伸性能进行了比较。结果显示,随应变速率的提高,材料的抗拉强度显著增加,延伸率降低。由于TRIP钢组织中残余奥氏体在应力应变作用下向马氏体的相变诱发转变显著改善了材料的塑性,因此在高应变率下的延伸率仍较好。  相似文献   

17.
通过光学显微镜、扫描电镜、电子万能拉伸试验机、X射线衍射以及背散射电子衍射等技术方法研究了退火温度对冷轧态Fe-0.4C-10Mn-6Al高强钢的组织与力学性能的影响。结果表明,试验钢冷轧后的微观组织主要为δ-铁素体、α-铁素体、奥氏体、马氏体与碳化物,退火后的组织主要由δ-铁素体、α-铁素体、奥氏体与碳化物组成,其中奥氏体含量因马氏体逆转变而随着退火温度升高而增加。随着退火温度的升高,屈服强度、抗拉强度均逐渐降低,伸长率逐渐提高。当退火温度达到800 ℃时,试验钢的强塑积达到27.84 GPa·%,有较好的综合力学性能。  相似文献   

18.
以传统TWIP钢为对比,测试了含N TWIP钢的力学性能,并利用XRD进行物相分析和TEM进行做观结构表征.结果表明,在由fcc或hcp结构向bcc结构马氏体进行相变时,晶体结构中的最大间隙由0.1047 nm降低至0.0725 nm.间隙原子N的存在显著增大bcc结构的晶格畸变能,提高α马氏体切变的阻力,因而强烈抑制α马氏体相变,导致组织中hcp结构ε相含量大幅度增加,提高了TWIP钢的强度,但也降低了钢的塑性.另外,奥氏体平均和区域层错几率的计算及微观组织分析结果表明,形变增加层错的数量,而马氏体相变消耗层错,从而减少层错数量.  相似文献   

19.
采用扫描电镜、准原位电子背散射衍射(EBSD)、X射线衍射和室温拉伸实验,研究了冷轧Fe20Mn0.3C钢在700~1000℃范围内退火1 h后的微观组织及其拉伸变形行为。结果表明,随着退火温度升高材料的屈服强度逐渐降低,而抗拉强度及伸长率则先升高后降低,当退火温度为800℃时,抗拉强度和伸长率达到峰值。800℃退火试样形成了均匀细小且非常稳定的奥氏体晶粒组织,其拉伸变形机制主要为孪生诱导塑性(TWIP效应);当退火温度进一步升高,奥氏体晶粒长大,其稳定性降低,空冷及拉伸过程中均发生马氏体相变,形变机理由TWIP效应转为相变诱导塑性(TRIP效应)。准原位拉伸EBSD研究表明:在拉伸变形过程中,退火试样中的淬火ε马氏体一方面通过γ→ε形式的TRIP效应增厚,另一方面通过ε→α'形式的TRIP效应转变成α'马氏体,而裂纹容易在α'马氏体界面形核扩展,因此,淬火ε马氏体越多,材料的伸长率越低。  相似文献   

20.
低碳Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb(质量分数,%)钢通过新型Q-P-T工艺处理后获得高的抗拉强度和良好延伸率的综合性能.对该低碳Q-P-T钢在拉伸过程中残余奥氏体含量的XRD测定和形变孪晶马氏体的TEM观测,证明了相变诱发塑性(TRIP)效应的存在.基于形变过程中马氏体和残余奥氏体中的平均位错密度测定和TEM的观察,验证了在中碳钢中最新发现的残余奥氏体吸收位错(DARA)新效应在低碳钢中同样存在,由此提出了DARA效应产生的条件,阐明了残余奥氏体增强高强度钢塑性的机制.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号