共查询到20条相似文献,搜索用时 0 毫秒
1.
日本大和化成研究所与兵库县立工业技术中心等单位协作 ,共同研制成了一种锂离子电池用的新型高容量负极材料 ,该负极是在铜箔的两面都用电镀法镀复上一层光亮锡合金镀膜。所采用的电镀浴液中添加了特殊的添加剂和微量金属元素 ,从而能够得到晶粒细小而且表面平滑的镀膜。这种负极的制造过程简化 ,工序缩短了 ,因而生产成本大幅度降低。使用这种负极的容量要比传统的碳负极容量大约高 1 7倍 ,并且在充放电过程中由于金属间化合物的生成而引起的体积变化很小 ,且与集电极的密合性很好 ,是制造高容量锂离子电池用的优质负极材料高容量锂离子电… 相似文献
2.
3.
采用模板-电沉积法制备锂离子电池Sn-Co-C微孔负极。首先,采用聚合法制备PS球乳液。然后,再以柠檬酸、EDTA为络合剂,CoCl2、SnCl4为主盐,添加甲酸和PS球乳液的电解液中,电沉积制备Sn-Co-C微孔复合电极材料。随后采用EDS、XRD和SEM分析其元素成分、晶体结构和表面形貌。最后采用恒流充放电和交流阻抗测试其电化学性能。结果表明,电极表面的微孔可以缓解锂电池充放电过程中产生的体积变化所导致的活性物质脱落,提高循环性能和寿命。Sn-Co-C负极组成的电池首次充放电比容量分别为705.4和1105 mA.h.g-1,循环126次后充放电比容量分别为393.3和403.2 mA.h.g-1。 相似文献
4.
锑具有首次嵌/脱锂容量大等优点,是制备大容量高安全性锂离子电池负极潜在的优良材料。本文介绍了此系列材料的制备方法、特性及其用途。 相似文献
5.
负极集流体铜箔对锂离子电池的影响 总被引:1,自引:0,他引:1
用循环伏安、扫描电子显微镜和循环检测装置研究了表面状况不同的铜箔集流体对锂离子电池性能的影响.结果表明,电解液在毛面铜箔表面发生还原反应的程度比在光面铜箔表面显著,其阳极溶解电位比光面铜箔约低0.8 V,且溶解需要的能量较少,相对耐腐蚀性较差.光面铜箔集流体锂离子电池的容量循环衰减要比毛面铜箔小,且随着循环的进行,后者的容量衰减趋势明显加剧. 相似文献
6.
单体锂离子电池极片的厚度一致性对电池组的性能发挥至关重要。针对在极片辊压中对极片的厚度的高精度要求,采用有限元软件,基于弹塑性有限元法对辊压过程中轧辊的变形进行了仿真。研究了辊系参数变化对极片厚度一致性的影响规律,并对Φ500 mm×500 mm的轧辊辊径及弯辊力设定进行优化。结果表明:辊径不变时,增加辊身长度,极片的厚度一致性变差;辊长不变时,增加辊径和施加弯辊力可以改善极片的厚度一致性;轧辊长径比为1∶1时,同时增加辊长和辊径,极片的厚度一致性变差。通过实验验证了有限元模拟的准确性,研究结果可为技术研究和现场生产提供参考。 相似文献
7.
用大豆皮制作锂离子电池负极 总被引:1,自引:0,他引:1
《金属功能材料》2010,17(3):80-80
日本日清才ィリ才集团公司开发成功利用大豆皮制作负极的锂离子电池。大豆皮经焙烧后磨成的碳粉具有植物所特有的多孔构造,这种多孔构造适用于Li离子出入有利于快速充放电。传统的取自石油原料的电池负极,其电池经过30min充电只能充电90%,而使用大豆皮负极的电池则可达到100%充电。这种负极的制造工艺简单,不需要活化处理。其锂离子电池将用于电动力车辆等方面。 相似文献
8.
作为锂离子电池负极材料,硅基材料具有较高的理论比容量、适中的嵌/脱锂电位、与电解液反应活性低等特点,成为最有前景的锂离子电池负极材料之一。然而由于其巨大的体积效应和较低的导电性导致其商业化应用具有相当的挑战性。本文综述了近年来为改善硅基材料的缺点而做的一些研究,展望了硅基材料作为锂离子电池负极材料的发展趋势。 相似文献
9.
锡基负极材料容量高,安全性好,是目前动力锂离子电池用新型负极材料研究的热点。本文综述了近年来国内外在锂离子电池锡基各类负极材料方面的研究进展。重点介绍了它们的电极反应机理,材料合成方法及电化学性能,分析阐述了它们各自存在的优势和不足,总结了现有材料的改性手段。提出制备炭包覆锡基纳米颗粒的复合材料或者核壳、多孔等特殊结构的纳米级锡基材料,并在负极极片中预先引入金属锂,将是解决问题的最佳手段。指出锡基材料作为锂离子电池负极材料具有良好的商业化发展前景。 相似文献
10.
本文主要介绍近年来硅及含硅材料作为锂离子电池负极材料的研究进展,包括硅单质、硅的氧化物以及硅的金属化合物和其它硅基多元化合物;分析了硅基材料作为锂离子电池负极材料存在的问题;阐述了硅基材料作为锂离子电池负极材料的研究前景。 相似文献
11.
金属锑薄膜用作锂离子电池负极的研究 总被引:4,自引:0,他引:4
采用磁控溅射方法制备金属锑薄膜,并把它作为锂离子二次电池负极进行研究。研究发现,通过磁控溅射比较容易控制条件得到符合条件的锑薄膜,并且薄膜锑有较平的吸放锂平台。另外,不同厚度对锑薄膜的吸放锂性能有较显著的影响,较薄的锑薄膜有着更好的电化学吸放锂性能,经过15 个循环后其脱锂容量仍保持在400 mAh·g-1 以上。 相似文献
12.
13.
石墨是目前商业化锂离子电池应用最广的负极材料,日益增长的市场需求对石墨负极材料的储锂性能提出了更高的要求。概述了锂离子电池的工作原理和石墨嵌锂机制,针对石墨负极材料理论比容量(372 mA.h/g)较低和电解液兼容性较差等问题,总结了近年来石墨负极材料的改性手段,主要分为表面改性和结构调控等2类,其中表面改性技术包括氧化和卤化处理,特点是通过调控界面化学性质,可增强石墨结构的稳定性,促进稳定SEI膜的形成,但对于石墨储锂容量的提升非常有限;结构调控包括剥层法和缺陷构筑法,特点是通过扩大石墨层间距、降低石墨维度及在石墨结构上构筑缺陷,从而增加锂离子的活性位点,提供更多锂离子扩散通道,缓解循环过程中的体积变化,改善石墨与电解液的相容性,显著提升石墨的储锂性能。最后对石墨负极材料的未来发展趋势进行了展望。 相似文献
14.
采用悬浮熔炼方法合成了新型锂离子电池负极材料NiSb2,并研究了其电化学性能。研究发现,退火与非退火NiSb2的首次可逆容量分别为494mAhg-1和430mAhg-1。经过15个循环后,非退火的NiSb2的放电容量仍保持在260mAhg-1,而退火的只剩下160mAhg-1。由于NiSb2具有优异的电化学性能,它可成为一种新型的锂离子电池负极材料。 相似文献
15.
为阐明锂离子电池极片辊压过程微观结构演化与宏观变形力学量化行为,通过分析变形区内极片涂层和集流体形貌特征.结果表明:辊压方向上活性颗粒密实度显著增加,将辊压对极片涂层的影响总结为碳胶相压缩、活性颗粒破碎及融合为二次颗粒.集流体整体未发生减薄,由于石墨硬度小,负极铜箔表面高度起伏均在600 nm以内,正极部分活性颗粒嵌入... 相似文献
16.
锂离子电池安全性能影响因素分析 总被引:4,自引:0,他引:4
锂离子电池作为可靠的能源已经广泛应用于小型电源驱动设备,但由于热稳定性引起的安全问题,其使用在大型电池特别是用于电动汽车(EV)和混合动力汽车(HEV)的动力锂离子电池方面受到限制.本文从锂离子电池材料和制作工艺两个方面分析影响锂离子电池安全性能的因素,并进一步分析锂离子电池组安全性的关键问题. 相似文献
17.
《稀有金属材料与工程》2016,(Z1)
通过简单、环保的方法成功制备了多孔CuO/GO纳米片。在该合成体系中,首先由碱性溶液中GO和Cu2+的静电作用生成Cu(OH)2/GO复合沉淀,经脱水制得多孔CuO纳米片。利用XRD、SEM、TEM等技术对多孔CuO/GO纳米片的结构及电化学性能进行表征,该复合纳米片表现出高可逆容量,优良的倍率容量和循环稳定性。结果表明:引入氧化石墨烯和合成多孔纳米结构相结合的制备方法,能实现优良的电化学性能,对于下一代高性能锂离子电池具有很好的应用前景。 相似文献
18.
电沉积法制备Sn-Co-C锂离子电池负极材料 总被引:2,自引:0,他引:2
分别采用柠檬酸和乙二胺四乙酸(EDTA)作为络合剂在CoCl2、SnCl4溶液中用电沉积方法制备Sn-Co合金电极,然后在相同条件下在镀液中加入硬碳制备Sn-Co-C复合电极.充放电测试结果显示,EDTA作为络合剂时镀层循环性能明显好于柠檬酸,且比容量也较高.Sn-Co合金电极循环30次比容量保持率达91.6%,加入硬碳的Sn-Co-C复合电极比容量及循环性能较之Sn-Co合金电极都有了较大提高.电子探针结果表明,EDTA作为络合剂的Sn-Co-C镀层中Sn、Co、C原子分数分别为61.8401%,22.3788%,12.5409%.SEM观察Sn-Co-C镀层表面为稳定的球状结构. 相似文献
19.
通过水热法及后续的氮化处理制备了尺寸均一的多孔氮化钒纳米带锂离子电池负极材料。利用SEM和XRD对所制备的样品进行了形貌和成分的表征,并研究了其电化学性能。结果表明,VN纳米带在40 m A/g电流密度下,首次放电比容量可高达374 m Ah/g,经过4次循环稳定之后,库伦效率能达到97%以上,并且100次循环后容量还能保持250 m Ah/g。 相似文献
20.
锂离子电池用氧化亚铜/石墨烯负极材料的制备 总被引:1,自引:0,他引:1
在不添加表面活性剂的水溶液体系中,采用水合肼作为还原剂制备得到具有八面体形貌的氧化亚铜/石墨烯复合材料。透射电镜分析表明:氧化亚铜颗粒与石墨烯在复合物中呈多层次分布,而且氧化亚铜一次颗粒很好地嵌入在石墨烯层间。相比于纯氧化亚铜,氧化亚铜/石墨烯复合材料作为锂离子电池负极材料的电化学性能得到了显著的改善。在100 mA/g的电流密度下循环50次后,氧化亚铜/石墨烯复合物的可逆比容量高达348.4 mA?h/g,同时,在不同倍率下(50,100,200,400,800 mA/g)循环60次后,其可恢复容量仍达305.8 mA?h/g。 相似文献