首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Fully automatic brain tumor segmentation is one of the critical tasks in magnetic resonance imaging (MRI) images. This proposed work is aimed to develop an automatic method for brain tumor segmentation process by wavelet transformation and clustering technique. The proposed method using discrete wavelet transform (DWT) for pre‐ and post‐processing, fuzzy c‐means (FCM) for brain tissues segmentation. Initially, MRI images are preprocessed by DWT to sharpen the images and enhance the tumor region. It assists to quicken the FCM clustering technique and classified into four major classes: gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and background (BG). Then check the abnormality detection using Fuzzy symmetric measure for GM, WM, and CSF classes. Finally, DWT method is applied in segmented abnormal region of images respectively and extracts the tumor portion. The proposed method used 30 multimodal MRI training datasets from BraTS2012 database. Several quantitative measures were calculated and compared with the existing. The proposed method yielded the mean value of similarity index as 0.73 for complete tumor, 0.53 for core tumor, and 0.35 for enhancing tumor. The proposed method gives better results than the existing challenging methods over the publicly available training dataset from MICCAI multimodal brain tumor segmentation challenge and a minimum processing time for tumor segmentation. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 305–314, 2016  相似文献   

2.
Automatic segmentation of brain tumour is the process of separating abnormal tissues from normal tissues, such as white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). The process of segmentation is still challenging due to the diversity of shape, location, and size of the tumour segmentation. The metabolic process, psychological process, and detailed information of the images, are obtained using positron emission tomography (PET) image, Computer Tomography (CT) image and Magnetic Resonance Image (MRI). Multimodal imaging techniques (such as PET/CT and PET/MRI) that combine the information from many imaging techniques contribute more for accurate brain tumour segmentation. In this article, a comprehensive overview of recent automatic brain tumour segmentation techniques of MRI, PET, CT, and multimodal imaging techniques has been provided. The methods, techniques, their working principle, advantages, their limitations, and their future challenges are discussed in this article. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 66–77, 2017  相似文献   

3.
In this article, the segmented brain tumor region is diagnosed into mild, moderate, and severe case based on the presence of tumor cells in the brain components such as Gray Matter (GM), White Matter (WM), and cerebrospinal fluid (CSF). The modified spatial fuzzy c mean algorithm is used to segment brain tissues. The feature Local binary pattern is extracted from segmented tissues, which is trained and classified by ANFIS Classifier. The performance of the proposed brain tissues segmentation system is analyzed in terms of sensitivity, specificity, and accuracy with respect to manually segmented ground truth images. The severity of brain tumor is diagnosed into mild case if the segmented brain tumor is present in the grey matter. The severity of brain tumor is diagnosed into moderate case if the segmented brain tumor is present in the WM. The severity of brain tumor is diagnosed into severe case if the segmented brain tumor is present in the CSF region. The immediate surgery is required for severe case and medical treatment is preferred for mild and moderate case.  相似文献   

4.
Tumor and Edema region present in Magnetic Resonance (MR) brain image can be segmented using Optimization and Clustering merged with seed‐based region growing algorithm. The proposed algorithm shows effectiveness in tumor detection in T1 ‐ w, T2 – w, Fluid Attenuated Inversion Recovery and Multiplanar Reconstruction type MR brain images. After an initial level segmentation exhibited by Modified Particle Swarm Optimization (MPSO) and Fuzzy C – Means (FCM) algorithm, the seed points are initialized using the region growing algorithm and based on these seed points; tumor detection in MR brain images is done. The parameters taken for comparison with the conventional techniques are Mean Square Error, Peak Signal to Noise Ratio, Jaccard (Tanimoto) index, Dice Overlap indices and Computational Time. These parameters prove the efficacy of the proposed algorithm. Heterogeneous type tumor regions present in the input MR brain images are segmented using the proposed algorithm. Furthermore, the algorithm shows augmentation in the process of brain tumor identification. Availability of gold standard images has led to the comparison of the suggested algorithm with MPSO‐based FCM and conventional Region Growing algorithm. Also, the algorithm recommended through this research is capable of producing Similarity Index value of 0.96, Overlap Fraction value of 0.97 and Extra Fraction value of 0.05, which are far better than the values articulated by MPSO‐based FCM and Region Growing algorithm. The proposed algorithm favors the segmentation of contrast enhanced images. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 33–45, 2017  相似文献   

5.
The proposed work introduces a modified method of fuzzy c means (FCM) algorithm using bias field correction and partial supervision techniques. The proposed method is named as bias corrected partial supervision FCM (BCPSFCM). The modified membership function takes the advantage of available knowledge from labeled patterns with the bias field correction. The experiment is tested on internet brain segmentation repository with their gold standard. The performance of the method is compared with three existing methods and 12 state of the art methods using dice coefficient, sensitivity, specificity, and accuracy. Accuracy of the proposed method reached upto 98%, 98%, and 99% of GM, WM, and CSF segmentation but required additional computation power from graphics processing unit (GPU). Further parallel BCPSFCM is proposed with the help of compute unified device architecture enabled GPU machine and the processing time is reduced up to 49 times than the serial implementation.  相似文献   

6.
This paper presents a skull stripping method to segment the brain from MRI human head scans using multi-seeded region growing technique. The proposed method has two stages. In Stage-1, the brain in the middle slice is segmented, the brains in the remaining slices are segmented in Stage-2. In each stage, the proposed method is required to identify the rough brain mask. The fine brain region in the rough brain mask is segmented using multi-seeded region growing approach. The proposed method uses multiple seed points which are selected automatically based on the intensity profile of grey matter (GM), white matter (WM) and cerebrospinal fluid (CSF) of the brain image. The proposed brain segmentation method using multi-seeded region growing (BSMRG) was validated using 100 volumes of T1, T2 and PD-weighted MR brain images obtained from Internet Brain Segmentation Repository (IBSR), LONI and Whole Brain Atlas (WBA). The best Dice (D) value of 0·971 and Jaccard (J) value of 0·944 were recorded by the proposed BSMRG method on IBSR dataset. For LONI dataset, the best values of D?=?0·979 and J?=?0·960 were obtained for the sagittal oriented images by the proposed method. The performance consistency of the proposed method was tested on the brain images of all types and orientation and have and produced better and stable results than the existing methods Brain Extraction Tool (BET), Brain Surface Extraction (BSE), Watershed Algorithm (WAT), Hybrid Watershed Algorithm (HWA) and Skull Stripping using Graph Cuts (GCUT).  相似文献   

7.
We present an algorithm to automatically register magnetic resonance (MR) and positron emission tomographic (PET) images of the human brain. Our algorithm takes an integrated approach: we simultaneously segment the brain in both modalities and register the slices. The algorithm does not attempt to remove the skull from the MR image, but rather uses “templates” constructed from PET images to locate the boundary between the brain and the surrounding tissue in the MR images. The PET templates are a sequence of estimates of the boundary of the brain in the PET images. For each of the templates, the registration algorithm aligns the MR and PET images by minimizing an energy function. The energy function is designed to implicitly model the relevant anatomical structure in the MR image. The template with the lowest energy after registration is the PET brain boundary. The alignment of this template in the MR image marks the MR brain boundary and gives the transformation between the two images. © 1998 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 9, 46–50, 1998  相似文献   

8.
In this article, we developed an approach for detecting brain regions that contribute to Alzheimer's disease (AD) using support vector machine (SVM) classifiers and the recently developed self regulating particle swarm optimization (SRPSO) algorithm. SRPSO employs strategies inspired by the principles of learning in humans to achieve faster and better optimization results. The classifiers for distinguishing subjects into AD patients and cognitively normal (CN) individuals were built using grey matter (GM) and white matter (WM) volumetric features extracted from structural magnetic resonance (MR) images. It could be observed from results that the classifier built using both GM and WM features provided accuracy of 89.26% which is better than the performance of classifiers built using either GM or WM features only. Moreover, consideration of clinical features in addition to volumetric features improves the accuracy further to 94.63% which is better than the performance reported by recent works in literature. In order to identify the brain regions that are important for AD vs CN classification problem, we used SRPSO to extract GM and WM features that yield better classification performance. Using 50 features identified by SRPSO, an accuracy of 89.39% was obtained which is close to the accuracy based on all features. The features identified by SRPSO were mapped back to the brain to identify brain regions that exhibit degeneration in AD. In addition to identifying areas known to be involved in AD like cerebellum, hippocampus, this helped in finding newer areas that might contribute towards AD.  相似文献   

9.
The aim of this work is to develop a new model for segmentation of brain structures in medical brain MR images. Brain segmentation is a challenging task due to the complex anatomical structure of brain structures as well as intensity nonuniformity, partial volume effects and noise. Generally the structures of interest are of relatively complicated size and have significant shape variations, the structures boundaries may be blurry or even missing, and the surrounding background is full of irrelevant edges. Segmentation methods based on fuzzy models have been developed to overcome the uncertainty caused by these effects. In this study, we propose a robust and accurate brain structures segmentation method based on a combination of fuzzy model and deformable model. Our method breaks up into two great parts. Initially, a preliminary stage allows to construct the various information maps, in particular a fuzzy map, used as a principal information source, constructed using the Fuzzy C‐means method (FCM). Then, a deformable model implemented with the generalized fast marching method (GFMM), evolves toward the structure to be segmented, under the action of a normal force defined from these information maps. In this sense, we used a powerful evolution function based on a fuzzy model, adapted for brain structures. Two extensions of our general method are presented in this work. The first extension concerns the addition of an edge map to the fuzzy model and the use of some rules adapted to the segmentation process. The second extension consists of the use of several models evolving simultaneously to segment several structures. Extensive experiments are conducted on both simulated and real brain MRI datasets. Our proposed approach shows promising and achieves significant improvements with respect to several state‐of‐the‐art methods and with the three practical segmentation techniques widely used in neuroimaging studies, namely SPM, FSL, and Freesurfer.  相似文献   

10.
Abnormal growth of cells in brain leads to the formation of tumors, which are categorized into benign and malignant. In this article, Co‐Active Adaptive Neuro Fuzzy Inference System (CANFIS) classification based brain tumor detection and its grading system is proposed. It has two phases as brain tumor segmentation and brain tissue segmentation. In brain tumor segmentation, CANFIS classifier is used to classify the test brain image into benign or malignant. Then, morphological operations are applied over the malignant image in order to segment the tumor regions in brain image. The K‐means classifier is used to classify the brain tissues into Grey Matter (GM), White Matter (WM) and Cerebro Spinal Fluid (CSF) regions as three different classes. Next, the segmented tumor is graded as mild, moderate or severe based on the presence of segmented tumor region in brain tissues.  相似文献   

11.
Accurate extraction of brain tissues from magnetic resonance (MR) images is important in neuroradiology. However, brain extraction is more difficult for pediatric brains than for adult brains due to several factors including smaller brain sizes and lower tissue contrasts. In this work, we propose a brain extraction technique that utilizes dual frame (DF) 3D U-net deep learning architecture and the human connectome project (HCP) database for multislice 2D pediatric T2-weighted MR images with diseases. To improve segmentation accuracy in small pediatric brains with detailed boundary regions, DF 3D U-net architecture was used. We pretrained networks with the HCP database to compensate for the limited amount of MR images and manual segmentation masks of pediatric patients. For quantitative analysis, we compared the brain extraction results of brain extraction tool, DF, and conventional 3D U-net using the dice similarity coefficient (DSC), intersection of union (IoU), and boundary F1 (BF) scores; each deep learning architecture was evaluated with and without pretraining using the HCP. This study included 10 patients with diseases and all images were acquired using a PROPELLER MR sequence. Pretraining using the HCP database enhanced segmentation performance of the network, and the skip connections in the DF 3D U-net could enhance the contour similarity of segmentation results. Experimental results showed that the proposed method increased the DSC, IoU, and BF scores by 0.8%, 1.6%, and 1.5%, respectively, compared with those of the conventional 3D U-net without pretraining.  相似文献   

12.
In this paper, we have proposed a variant of UNet for brain magnetic resonance imaging (MRI) segmentation. The proposed model, termed as Residual UNet with Dual Attention (RUDA), addresses the two significant challenges of UNet: extraction of the complex features with unclear boundaries and the problem of over-segmentation due to the redundancy caused by the skip connection usage. RUDA is constituted upon the residual blocks for extracting the complex structures. It Introduces attention into the skip connections to avoid redundancy and thereby the chance of over-segmentation. Our model segments brain MRI into white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF) regions, which are considered crucial informative substructures for diagnosing neurological disorders such as Alzheimer's. It has been implemented in an ensemble manner to accommodate the multi-sequence (T1-weighted, IR, and T2-FLAIR) scans. The empirical analysis shows that with an accuracy of 93.80%, RUDA outperforms the two baseline models: UNet (91.37%), ResUNet (91.44%).  相似文献   

13.
Medical image processing plays an important role in brain tissue detection and segmentation. In this paper, a computer aided detection of brain tissue compression based on the estimation of the location of the brain tumor. The proposed system detects and segments the brain tissues and brain tumor using mathematical morphological operations. Further, the brain tissue with tumor is compressed using lossless compression technique and the brain tissue without tumor is compressed using lossy compression technique. The proposed method achieves 96.46% sensitivity, 99.20% specificity and 98.73% accuracy for the segmentation of white matter regions from the brain. The proposed method achieves 98.16% sensitivity, 99.36% specificity and 98.78% accuracy for the segmentation of cerebrospinal fluid (CSF) regions from the brain and also achieves 93.07% sensitivity, 98.79% specificity and 97.63% accuracy for the segmentation of grey matter regions from the brain. This paper focus the brain tissue compression based on the location of brain tumor. The grey matter of the brain is applied to lossless compression due to the presence of the tumor in grey matter of the brain. The proposed system achieves 29.23% of compression ratio for compressing the grey matter of the brain region. The white matter and CSF regions of the brain are applied to lossy compression due to the non‐presence of the tumor. The proposed system achieves 39.13% of compression ratio for compressing the white matter and also achieves 37.5% of compression ratio for compressing the CSF tissue. © 2016 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 26, 237–242, 2016  相似文献   

14.
15.
To segment vascular structures in 3‐D CTA/MRA images, this article presents a new region growing algorithm based on local cube tracking. In the proposed algorithm, a small local cube is segmented to detect a vessel segment, and the following local cube(s) is determined based on the segmentation result. This procedure is repeated until the segmentation is completed. By confining the segmentation inside each local cube, a robust result can be obtained even in a tubular structure of steadily changing intensity. For segmentation, a locally adaptive and competitive region growing scheme is adopted to obtain well‐defined vessel boundaries. It should be emphasized that the proposed algorithm can detect all branches with practically acceptable computational complexity. In addition, its segmentation result is represented as a tree structure having many branches so that a user may easily correct the result branch‐by‐branch, if necessary. Experimental results from real images prove that the proposed algorithm produces prospective vessel segmentation results for 3‐D CTA/MRA images and segments vessels of various sizes well, including stenoses and aneurysms. © 2003 Wiley Periodicals, Inc. Int J Imaging Syst Technol 13, 208–214, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.10059  相似文献   

16.
This paper proposes a fully automated method for MR brain image segmentation into Gray Matter, White Matter and Cerebro‐spinal Fluid. It is an extension of Fuzzy C Means Clustering Algorithm which overcomes its drawbacks, of sensitivity to noise and inhomogeneity. In the conventional FCM, the membership function is computed based on the Euclidean distance between the pixel and the cluster center. It does not take into consideration the spatial correlation among the neighboring pixels. This means that the membership values of adjacent pixels belonging to the same cluster may not have the same range of membership value due to the contamination of noise and hence misclassified. Hence, in the proposed method, the membership function is convolved with mean filter and thus the local spatial information is incorporated in the clustering process. The method further includes pixel re‐labeling and contrast enhancement using non‐linear mapping to improve the segmentation accuracy. The proposed method is applied to both simulated and real T1‐weighted MR brain images from BrainWeb and IBSR database. Experiments show that there is an increase in segmentation accuracy of around 30% over the conventional methods and 6% over the state of the art methods.  相似文献   

17.
Three-dimensional (3D) brain tumor segmentation is a clinical requirement for brain tumor diagnosis and radiotherapy planning. This is a challenging task due to variation in type, size, location, and shape of tumors. Several methods such as particle swarm optimization (PSO) algorithm formed a topological relationship for the slices that converts 2D images into 3D magnetic resonance imaging (MRI) images which does not provide accurate results and they depend on the number of input sections, positions, and the shape of the MRI images. In this article, we propose an efficient 3D brain tumor segmentation technique called modified particle swarm optimization. Also, segmentation results are compared with Darwinian particle swarm optimization (DPSO) and fractional-order Darwinian particle swarm optimization (FODPSO) approaches. The experimental results show that our method succeeded 3D segmentation with 97.6% of accuracy rate more efficient if compared with the DPSO and FODPSO methods with 78.1% and 70.21% for the case of T1-C modality.  相似文献   

18.
Tissue segmentation in magnetic resonance brain scans is the most critical task in different aspects of brain analysis. Because manual segmentation of brain magnetic resonance imaging (MRI) images is a time‐consuming and labor‐intensive procedure, automatic image segmentation is widely used for this purpose. As Markov Random Field (MRF) model provides a powerful tool for segmentation of images with a high level of artifacts, it has been considered as a superior method. But because of the high computational cost of MRF, it is not appropriate for online processing. This article has proposed a novel method based on a proper combination of MRF model and watershed algorithm in order to alleviate the MRF's drawbacks. Results illustrate that the proposed method has a good ability in MRI image segmentation, and also decreases the computational time effectively, which is a valuable improvement in the online applications. © 2017 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 27, 78–88, 2017  相似文献   

19.
Tissues in brain are the most complicated parts of our body, a clear examination and study are therefore required by a radiologist to identify the pathologies. Normal magnetic resonance (MR) scanner is capable of producing brain images with bounded tissues, where unique and segregated views of the tissues are required. A distinguished view upon the images is manually impossible and can be subjected to operator errors. With the assistance of a soft computing technique, an automated unique segmentation upon the brain tissues along with the identification of the tumor region can be effectively done. These functionalities assist the radiologist extensively. Several soft computing techniques have been proposed and one such technique which is being proposed is PSO‐based FCM algorithm. The results of the proposed algorithm is compared with fuzzy C‐means (FCM) and particle swarm optimization (PSO) algorithms using comparison factors such as mean square error (MSE), peak signal to noise ratio (PSNR), entropy (energy function), Jaccard (Tanimoto Coefficient) index, dice overlap index and memory requirement for processing the algorithm. The efficiency of the PSO‐FCM algorithm is verified using the comparison factors.  相似文献   

20.
This proposed work is aimed to develop a rapid automatic method to detect the brain tumor from T2‐weighted MRI brain images using the principle of modified minimum error thresholding (MET) method. Initially, modified MET method is applied to produce well segmented and sub‐structural clarity for MRI brain images. Further, using FCM clustering the appearance of tumor area is refined. The obtained results are compared with corresponding ground truth images. The quantitative measures of results were compared with the results of those conventional methods using the metrics predictive accuracy (PA), dice coefficient (DC), and processing time. The PA and DC values of the proposed method attained maximum value and processing time is minimum while compared to conventional FCM and k‐means clustering techniques. This proposed method is more efficient and faster than the existing segmentation methods in detecting the tumor region from T2‐weighted MRI brain images. © 2015 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 25, 77–85, 2015  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号