首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用粉末冶金方法,制备石墨烯/Al-18Si-3Cu-Mg多元金属基复合材料。借助扫描电镜(SEM)、X射线衍射仪、往复摩擦磨损试验机,研究不同石墨烯添加量对石墨烯/Al-18Si-3Cu-Mg多元金属基复合材料微观组织、摩擦磨损性能的影响,并运用分形理论定量分析复合材料微观组织形貌及摩擦磨损机制。结果表明,石墨烯的添加可显著细化石墨烯/Al-18Si-3Cu-Mg多元金属基复合材料内Si颗粒的尺寸;当石墨烯添加量分别为0%、0.3%、0.5%、0.7%时,复合材料的硬度值呈现先升高后下降的趋势;石墨烯含量为0.5%时,硬度值最高摩擦系数最小,分别为84.8HB和0.48,摩擦系数比未添加石墨烯时降低了28%。分析试样磨痕形貌及微观组织形貌分形维数(D)发现,当石墨烯添加量为0.5%时,D值为2.0533,摩擦磨损机制为磨粒磨损。  相似文献   

2.
利用Abaqus有限元分析软件,对石墨烯/Al-18Si-4Cu-Mg复合材料的铣削过程进行有限元模拟仿真,并对石墨烯质量百分含量为0%~0.7%的四组样品进行铣削性能测试,研究石墨烯/Al-18Si-4Cu-Mg复合材料的切削力变化特征.结果表明,Abaqus有限元软件建立的切削力模型与实测铣削力曲线变化趋势相似,说...  相似文献   

3.
研究了Al-15Si-xCu合金高温(400℃)摩擦磨损行为.采用Pandat软件计算了Al-15Si-xCu系合金平衡相图.利用光学显微镜和扫描电镜研究了Al-15Si-xCu系活塞合金不同铜含量下400℃摩擦磨损行为.研究结果表明:活塞合金经T6热处理后,随着Cu含量的增加,摩擦因数逐渐减小,磨损失重量减少,其高温耐磨性能得到明显提高;w(Cu)含量为4.5和5.5时,活塞合金的摩擦磨损性能差异较小,这与合金中高温稳定相(Q相、ε相、θ相)密切相关;w(Cu)含量为2.5和3.5的活塞合金,其磨损机制主要是粘着磨损,而对于w(Cu)含量为4.5和5.5的合金,其磨损机制主要是磨粒磨损.  相似文献   

4.
聚四氟乙烯填充PA1010的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
以注塑成型法制备了聚四氟乙烯(PTFE)填充PA1010复合材料,利用M-2000磨损试验机测试了该复合材料与GCr15轴承钢对摩时的摩擦磨损性能,并用扫描电子显微镜(SEM)观察了试样磨损表面形貌.结果表明:PTFE填充PA1010可显著改善尼龙复合材料的摩擦磨损性能.w(PTFE)为25%时,复合材料的摩擦学综合性能最佳.复合材料的摩擦系数和磨损体积随施加载荷、滑动速度的增加分别呈现降低和增加的趋势.在200 N载荷下,复合材料磨损主要为磨粒磨损;在400 N载荷下,磨损表现为黏着磨损和磨粒磨损共同作用.在滑动速度为0.21 m/s时,材料摩擦表面因挤压发生塑性流变,其磨损机理为磨粒磨损;在滑动速度为0.84 m/s,复合材料因热疲劳和应力疲劳发生剥层,磨损机理转变为疲劳剥层磨损.  相似文献   

5.
为了研究水润滑条件下试验载荷和速度对纳米碳化硅填料(Nano–SiC)改性超高分子量聚乙烯(UHMWPE)–橡胶复合材料摩擦学性能的影响,通过高温混炼、热压成型制备Nano–SiC辅以聚四氟乙烯(PTFE)填充改性UHMWPE–橡胶复合材料;采用MRH–3型环–块摩擦试验机探究4种不同载荷条件下复合材料的摩擦磨损性能,采用光学显微镜(OM)、扫描电子显微镜(SEM)和非接触光学3维轮廓仪对试样微观磨损表面形貌分析,从微观层面探究改性复合材料的摩擦机理。试验结果表明:在定载变速条件下,速度由0.005 m/s升到0.541 m/s时,改性复合材料的动、静摩擦系数均呈现大幅下降趋势,摩擦系数波动归于平稳,黏–滑现象逐渐减弱直至消失。试验载荷和纳米粒子含量的变化与试样摩擦磨损程度呈负相关:在水润滑条件下,随着纳米粒子含量增加,摩擦系数与磨损率均出现明显降低,填充比例5%的复合材料摩擦学性能最佳,摩擦系数整体较UHMWPE–橡胶材料降低35%,磨损率降低46.6%,磨损表面形貌也随之发生改变;随着载荷的增加,复合材料的磨损率从1.25×10~(–6) mm~3/(N·m)降至0.40×10~(–6) mm~3/(N·m)。Nano–SiC的含量与工况载荷压力对摩擦磨损均存在一定影响,即填充适量Nano–SiC的UHMWPE–橡胶复合材料能减轻黏–滑现象,与一定工况压力下的对偶钢环组成的摩擦配副能有效改善摩擦性能,有利于减小水润滑轴承的磨损,增强传动系统服役寿命。  相似文献   

6.
以PAN基碳纤维针刺整体毡为预制体,经化学气相渗透法制得C/C多孔坯体,采用反应熔体浸渗法制备了C/C-Si C摩擦材料。用XD-MSM型定速摩擦试验机测定摩擦磨损性能,研究了不同Si含量对C/C-Si C摩擦材料摩擦磨损性能的影响。利用VK-X200三维激光扫描显微镜观察了摩擦材料磨损后表面的微观形貌并探讨其磨损机制。结果表明:随着Si质量分数的增加,摩擦材料的硬度和冲击强度逐渐增大,开孔率逐渐降低,摩擦材料的磨损形式由单一的磨粒磨损转变为磨粒磨损和黏着磨损的混合磨损机制。3种摩擦材料中,Si质量分数为28.42%的C/C-Si C摩擦材料物理和力学性能均较好,摩擦系数较大,磨损率较小,摩擦磨损性能较好。 更多还原  相似文献   

7.
以环氧树脂为基体、玄武岩短纤维为增强材料,制备了玄武岩短纤维/环氧树脂复合材料.研究了不同玄武岩短纤维含量对复合材料拉伸强度和耐磨性能的影响,采用扫描电子显微镜(SEM)观察了复合材料的断面形貌和磨损表面形貌,分析了磨损机制.结果表明,玄武岩短纤维/环氧树脂复合材料的抗拉强度和耐磨性能与纯环氧树脂相比均有不同程度的改善和提高,当玄武岩短纤维的含量为8%时,复合材料的拉伸强度最大;当玄武岩短纤维的含量为6%时,磨损率最低.随着玄武岩短纤维含量的增加,复合材料的磨损机制由黏着磨损向磨粒磨损转化.  相似文献   

8.
为了研究水润滑条件下试验载荷和速度对纳米填料(Nano-SiC)改性超高分子量聚乙烯(UHMWPE)/橡胶复合材料摩擦学性能的影响,通过高温混炼、热压成型制备Nano-SiC辅以聚四氟乙烯(PTFE)填充改性UHMWPE/橡胶复合材料。采用MRH-3型环-块摩擦实验机探究四种不同载荷条件下改性复合材料的摩擦磨损性能,采用光学显微镜(OM)、扫描电子显微镜(SEM)和非接触光学三维轮廓仪对试样微观磨损表面形貌分析,从微观层面探究改性复合材料的摩擦机理。试验结果表明:在定载变速条件下,速度由0.02m/s升到3.59m/s时,改性复合材料的动摩擦系数波动幅度与静摩擦系数均呈现大幅下降趋势,粘-滑现象(Stick-Slip Phenomenon)减弱,摩擦系数波动归于平稳;试验载荷和纳米粒子含量的变化与试样摩擦磨损程度呈负相关,在水润滑条件下,随着纳米粒子含量增加,摩擦系数与磨损率均出现明显降低,填充比例为5%的复合材料摩擦学性能最佳,摩擦系数整体较UHMWPE/橡胶材料降低35%,磨损率降低46.6%,磨损表面形貌也随之发生改变;随着载荷的增加,复合材料的磨损率从1.25×10-6mm3/(Nm)降至0.4×10-6mm3/(Nm)。Nano-SiC的含量与工况载荷压力对摩擦磨损均存在一定影响,即填充适量Nano-SiC的UHMWPE/橡胶复合材料与一定工况压力下的对偶钢环组成的摩擦配副能改善摩擦环境,减轻粘-滑现象,有利于减小材料的磨损。  相似文献   

9.
采用熔体过热处理工艺制备Al-18Si合金试样。通过OM、SEM观察和摩擦磨损性能测试,研究微观组织形貌对Al-18Si合金摩擦磨损性能的影响。借助于Matlab软件,对摩擦试样表面的磨痕形貌分形维数编写相应的Matlab计算程序。结果显示,随着熔体过热处理温度的升高,过共晶Al-18Si合金中初晶硅形态和尺寸发生变化;熔体处理温度从800℃、850℃、900℃、950℃逐步升高,摩擦试样表面磨痕形貌的分形维数1.7384、1.6491、1.5934、1.5786逐步下降,Al-18Si合金的摩擦系数随熔体处理温度的升高从0.65下降至0.41;磨痕形貌分形维数变化与Al-18Si合金的摩擦磨损机理密切相关。  相似文献   

10.
为提高 Li VO_3的电化学性能,通过简易溶液法制备了一系列 Li VO_3/ 石墨烯( 质量分数分别为 0,3% ,5% ,7% ) 复合材料。借助 X 射线衍射( XRD) 、扫描电镜( SEM) 、电化学交流阻抗测试( EIS) 、恒电位间隙滴定( GITT) 等表征技术,考察石墨烯包覆以及石墨烯的含量对 Li VO_3的晶体结构、微观形貌和电化学性能的影响。结果表明: 通过溶液法可实现石墨烯包覆,石墨烯包覆能细化晶粒; 随着石墨烯含量的增大,样品颗粒尺寸减小,锂离子扩散系数增大,材料电子导电率提高,因而Li VO_3/ 石墨烯复合材料的倍率性能和循环性能都有一定程度的提升。石墨烯质量分数为 5% 的样品 LVO / Gr - 3 综合性能最优,首次放电容量可达 338 m Ah/g,在 200 m A/g 的电流下循环 100 次,容量保持率为 71. 4% 。  相似文献   

11.
为了研究干摩擦条件下对偶面粗糙度对纳米粒子填充改性聚四氟乙烯(PTFE)摩擦学性能的影响,采用冷压成型、热烧结的工艺方法制备nano-SiO_2填充改性PTFE复合材料;采用LSR–2M型往复摩擦磨损试验机评价了nano-SiO_2改性PTFE复合材料与具有3种不同表面粗糙度的对偶钢块(GCr15)之间的摩擦学特性;利用光学显微镜(OM)、扫描电子显微镜(SEM)和能谱仪(EDS)分别表征了转移膜及磨屑的形貌、微观结构以及化学成分,从微观角度揭示nano-SiO_2改性PTFE复合材料的摩擦转移机理。试验结果表明:纯PTFE及不同含量nano-SiO_2改性PTFE复合材料的摩擦系数随着对偶钢块表面粗糙度的增大整体呈现增大趋势,在粗糙度Ra为0.1的对偶表面上复合材料的摩擦系数随着nano-SiO_2含量的增加变化相对较小;在3种不同粗糙度对偶表面上,nano-SiO_2的加入均有效降低了PTFE的磨损体积,当填充比例为0.5%时复合材料在粗糙度Ra为1.2的对偶面上摩擦学性能最佳,磨合时间比纯PTFE缩短了近10 min,耐磨性比纯PTFE提高了33.3%;复合材料中nano-SiO_2的含量与对偶表面粗糙度存在一定的协同效应,即填充适量nano-SiO_2的PTFE复合材料与具有一定表面粗糙度的对偶钢块组成的摩擦配副能有效促进复合材料的摩擦转移,并能在对偶表面形成覆盖率高、均匀、连续、表面较粗糙且与摩擦方向趋向一致的转移膜,有利于降低材料的磨损。  相似文献   

12.
碳纳米管/环氧复合材料的摩擦磨损性能研究   总被引:1,自引:0,他引:1  
研究了多壁碳纳米管(MWNTs)含量、超声分散时间、超声分散方式对环氧复合材料摩擦磨损性能的影响,通过扫描电镜(SEM),透射电镜(TEM)分析了材料表面磨损形貌、MWNTs分散程度,并探讨了复合材料摩擦磨损机理.结果表明:MWNTs添加量为1.5%时,MWNTs/Epoxy复合材料比环氧树脂摩擦系数降低17.8%,磨耗率降低91.7%;加入MWNTs降低了复合材料粘着磨损与疲劳剥落;延长超声波处理时间及采用高功率超声波仪器能够有效提高MWNTs分散程度,提高复合材料摩擦磨损性能.  相似文献   

13.
SiC颗粒增强PTFE基复合材料摩擦磨损特性研究   总被引:5,自引:0,他引:5  
利用冷压烧结法制备了不同含量的SiC颗粒填充聚四氟乙烯(PTFE)复合材料,采用M-200环块试验机进行摩擦磨损试验,研究了SiC颗粒增强PTFE基复合材料在干摩擦条件下的磨损特性,并利用扫描电子显微镜对复合材料的磨损表面形貌进行了观察,对复合材料的磨损机制进行了分析.结果表明:SiC颗粒增强复合材料的耐磨性能显著提高,但其摩擦系数有所增大;随SiC颗粒含量的增加复合材料的磨损机理由粘着磨损占主导逐渐转变为显微切削占主导;复合材料中增强相SiC颗粒有3种流失形式:整体脱落、磨损、碎裂.  相似文献   

14.
采用二次热压法制备Gr质量分数为10%~25%的Gr/Al-0.7Si-1.2Mg复合材料,研究了制备工艺对组织结构及其摩擦磨损性能的影响.结果表明,采用较快速率升温的热压法可有效防止石墨铝复合材料制备过程的有害界面反应,得到组织均匀且致密的石墨铝基复合材料.Gr/Al-0.7Si-1.2Mg复合材料的摩擦系数随载荷的增大而降低,在较大载荷时,可形成完整的石墨润滑膜,不同石墨含量的复合材料的磨擦系数趋于一致,达到0.17.石墨含量高的复合材料容易形成润滑层,所以摩擦系数在较低载荷下就能达到最小值.复合材料相对密度对磨损率的影响较大,接近理论密度的复合材料在本研究试验条件下能保持较低的磨损率,最低可达到0.5×10-3~2.1×10-3mm3/m.  相似文献   

15.
研究了加入不同含量的微细铬铁粉对烧结钢干摩擦磨损性能的影响,并借助于扫描电镜观察分析其磨损形貌,探讨摩擦磨损机制。研究结果表明:添加微细铬铁粉可改善烧结钢的强度、硬度和摩擦磨损性能,铬的质量分数为1.5%时,耐磨性最佳。磨损造成一定厚度的塑性变形,硬度较高的材料塑性变形层较薄。磨损早期,磨粒磨损是主导机制,磨损后期,由于塑性变形导致亚表层产生裂纹,进而发生的剥层磨损是主导磨损机制。  相似文献   

16.
在干滑动摩擦条件下,采用M-2000型磨损试验机测试不同载荷和行程对纯镁摩擦磨损性能的影响,并结合试样磨损表面形貌探讨磨损机制。结果表明:纯镁的摩擦因数随着载荷的增大而减小,随行程的增加变化不明显;磨损量随着载荷、行程的增大而增加;随着载荷的增大,纯镁的磨损机制依次表现为氧化磨损、磨粒磨损,剥层磨损和疲劳磨损。  相似文献   

17.
纳米Si3N4颗粒填充铸型尼龙的摩擦学性能研究   总被引:25,自引:0,他引:25  
为了研究纳米Si3N4颗粒作为填料对铸型尼龙(MC尼龙)的摩擦磨损性能的影响,选用两种复合材料在MM-200摩擦磨损试验机上进行了试验研究,并借助于扫描电镜观察了磨损形貌,探讨了磨损机理,研究结果表明,在干摩擦条件下,Si3N4颗粒填MC尼龙与钢环对摩的摩擦数随载荷的升高而降低,在相同载荷时均高于纯尼龙,在一定的滑动速度下,Si3N4颗粒填充MC尼龙的耐磨性能与载荷大小有关,当载荷较低时,复合材料的耐磨性能比纯尼龙好,其磨损机理主要是磨粒磨损和粘着磨损,当载荷较高时,复合材料的耐磨性能不如纯尼龙,其磨损机理主要是疲劳剥落,并有磨粒磨损和粘着磨损。  相似文献   

18.
以光学显微镜(OM)、X射线衍射分析(XRD)、扫描电子显微镜(SEM)和电子探针(EPMA)方法分析涂层相组织结构和显微形貌,采用硬度测试仪及滑动磨损机测试涂层硬度及耐磨性能.结果表明,涂层中原位合成了TiB和TiN强化相颗粒,分别呈现针棒状形貌组织和等轴晶形貌组织;激光功率对组织形貌影响较大,随着激光功率的提高,熔覆层的硬度和耐磨性能呈上升的趋势;母材的磨损机制主要为疲劳磨损,而熔覆层金属的磨损主要由疲劳磨损和磨粒磨损共同作用,其中磨粒磨损占主体作用.  相似文献   

19.
采用玻璃纤维(GF)微粉与MoS2复合改性聚四氟乙烯(PTFE)密封唇片材料,考察复合材料的力学、干摩擦磨损性能及其磨损机理。结果表明:当GF质量分数为15%时,PTFE/GF试样的回弹率达到最大值92.5%,摩擦因数为0.29,相比纯PTFE有所增加,而磨损率大大降低,仅为1.8×10?6mm3/(N·m);在此基础上,当MoS2添加量为5%时,PTFE/GF/MoS2试样的回弹率略有降低,但仍然保持在90%以上,其摩擦因数为0.31,体积磨损率进一步降低到1.25×10?6mm3/(N·m)。磨损面SEM分析表明:纯PTFE呈现出严重的塑性变形和粘着磨损特征,而PTFE/GF主要表现为磨粒磨损行为;适当MoS2含量的PTFE/GF/MoS2试样在摩擦过程中磨粒磨损特征消失,仅有非常轻微的粘着磨损行为。  相似文献   

20.
为了合理选择螺杆泵定子橡胶材料以提高螺杆泵的使用寿命,分析了不同工况下丁腈橡胶与金属配副的摩擦磨损机理.采用MPV-600环块式摩擦磨损试验机对不同炭黑质量分数的丁腈橡胶在变载荷情况下进行摩擦磨损试验,利用体视显微镜观察橡胶磨损后的表面形貌,使用红外光谱仪分析表面官能团变化.试验结果表明:干摩擦情况下,磨损量在一定炭黑质量分数范围内随其增加而减小,磨损机制为黏着磨损和磨粒磨损;水润滑情况下,由于水的润滑及冷却作用,炭黑质量分数适中的橡胶耐磨性最好,磨损机制为磨粒磨损;原油润滑低载荷情况下,磨损量几乎不受炭黑质量分数的影响,而高载荷情况下,炭黑质量分数越高,磨损量越小,其磨损机制以腐蚀磨损为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号