首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 166 毫秒
1.
The effects on wort quality when mashing with unmalted sorghum (0–100%) and malted barley (100–0%) in combination with industrial enzymes were evaluated. A mashing program with temperature stands at 50°C, 95°C and 60°C was used. Different combinations of commercial enzymes were evaluated. A heat stable α‐amylase was found to be essential for efficient saccharification. The inclusion of a fungal α‐amylase in mashes with a high sorghum content improved filtration rates to that of 100% malted barley mashes. Addition of a bacterial protease increased the amount of nitrogen solubilisation and peptide degradation. An increase of the relative proportion of sorghum in the grist resulted in decreases in wort filtration, colour, viscosity, attenuation limit, free amino nitrogen, high molecular weight nitrogen, and a corresponding increase in pH (p < 0.01). Overall the addition of malted barley in small proportions to unmalted sorghum mashes together with commercial enzymes was found to improve the potential for brewing a high quality lager beer from unmalted sorghum.  相似文献   

2.
Small scale mashes (50 g total grist) with grists containing up to 50% by weight of extruded whole sorghum produced worts of high extract yield and low viscosity. Increasing the proportion of extruded sorghum in the grist resulted in decreasing wort filtration volume, total nitrogen and free amino nitrogen content. The wort filtration behaviour of mashes containing sorghum extruded at 175°C was superior to that of mashes containing sorghum extruded at 165°C or 185°C. The results from such small scale mashing experiments suggested that extruded sorghum compared favourably to extruded barley and extruded wheat as a brewing adjunct. Worts and beers were produced on a pilot brewery scale (100 1) from grists comprising 70% malt + 30% extruded sorghum and 100% malt under isothermal infusion mashing conditions. Mashes containing sorghum extruded at 175°C showed comparable wort filtration behaviour to that of the all malt control mash whereas mashes containing sorghum extruded at 165°C or 185°C showed poor wort filtration behaviour. Worts produced from grists containing extruded sorghum fermented more quickly than the control wort and attained lower values of final gravity. The resulting beers were filtered without difficulty. Beers produced from grists containing extruded sorghum contained lower levels of total nitrogen and free amino nitrogen compared to the control beer consistent with extruded sorghum contributing little or no nitrogenous material to the wort and beer. Beers brewed from grists containing extruded sorghum were of sound flavour and showed reasonable foam stability behaviour.  相似文献   

3.
Small scale mashes (50 g total grist) with grists containing high proportions of raw sorghum (50%–80% malt replacement) showed high values of extract recovery and produced worts of lower total nitrogen, free amino nitrogen, viscosity and colour but higher values of pH compared to worts produced from all malt mashes. Increasing the proportion of raw sorghum in the grist relative to malt resulted in a decline in extract recovery, wort total nitrogen, free amino nitrogen and an increase in wort pH. Addition of industrial enzyme preparations to mashes containing raw sorghum resulted in higher values of extract recovery (enzyme preparations containing α amylase and β glucanase), higher values of wort total nitrogen and free amino nitrogen (enzyme preparations containing a neutral proteinase) and decreased wort viscosity (enzyme preparations containing β glucanase or cellulases) compared to worts produced from untreated mashes. Worts and beers were produced on a pilot brewery scale from 50% malt and 50% polished (whole) sorghum (single decoction mashing regime) and 20% malt and 80% raw sorghum supplemented with an industrial enzyme preparation (double mashing regime). Mashes comprising 50% malt and 50% polished sorghum showed comparable wort filtration behaviour (lautering) to that of control mashes (70% malt and 30% maize grists) whereas wort produced from 20% malt and 80% raw sorghum filtered slowly. Worts produced from grists containing sorghum were of high fermentability and showed lower levels of total nitrogen and free amino nitrogen compared to control worts. Analysis of worts produced from small scale mashes containing raw sorghum and a pilot brewery scale mash comprising 20% malt and 80% raw sorghum demonstrated that the levels of total nitrogen and free amino nitrogen were higher than expected from the reduction in the malt content of the mash, consistent with the release of nitrogenous components (polypeptides, peptides and amino acids) derived from sorghum into the wort. Beers produced from 50% malt and 50% polished sorghum and 20% malt and 80% raw sorghum were filtered without difficulty and were of sound flavour. Beers produced from 50% malt and 50% polished sorghum contained lower levels of isobutanol, 2-methylbutanol, dimethylsulphide and higher levels of n propanol and diacetyl compared to control beers.  相似文献   

4.
Research reports on extracts, proteins, total nitrogen and free amino nitrogen content of sorghum malt and worts obtained from mashes indicate that sorghum is potentially an alternative substrate for conventional beer brewing in the tropics. Remarkable variations in biochemical characteristics among different sorghum cultivars affect their optimal malting conditions. Factors such as temperature and time of steeping and germinating of grains with their intrinsic enzymic activities, and kilning temperature determine the quality of malt. Further works on mashing, viscosity and fermentability of worts as well as the character of the resulting beers, such as alcoholic content, colour, taste and specific gravity tend to confirm the status of sorghum as a credible substitute for barley in beer brewing. This review reports on progress made in the use of sorghum for brewing beer.  相似文献   

5.
A sorghum variety was supplied as commercial malt and as an unmalted cereal by a maltster. The commercial sample had been malted in a tropical country. Sub‐samples of the unmalted cereal were malted in the laboratory under controlled germination temperatures of 28°C and 30°C. Laboratory and commercially malted sorghum were studied for their brewing qualities. The α‐amylase development in sorghum malt was enhanced when germination was carried out at the higher temperature of 30°C rather than at 28°C. Hot water extract (HWE) was more variable. With infusion mashing, results showed a significant difference for germination time (3–6 days), but no significant difference relating to germination temperature. With the decantation mashing method the reverse was observed. The low numerical values of HWE obtained from sorghum malt in the infusion mashing process confirmed that this process is not suitable to produce optimal extract development from malted sorghum. The 28°C germinated sorghum released more FAN products into the worts than the 30°C malt, using both the infusion and decantation methods. With regard to the parameters tested, commercially malted sorghum gave lower analytical values than laboratory malted sorghum. It was also observed that variations in malting temperatures and mashing processes can cause unexpected variations in the analyses of sorghum malt. These findings suggest that careful process control is required during the malting and mashing of sorghum.  相似文献   

6.
The principles of extrusion cooking are summarised. In small scale trials good extracts were obtained from extruded barley when it was mashed with industrial enzymes, using a programmed temperature cycle. Extruded barley, wheat and maize and wheat flour yielded acceptable levels of extract when mashed with lager malt (70%) using a programme with 1 hour rests at 50°C and 65°C. The extracts obtained from these grists were increased above those obtained from grists of lager malt alone and the viscosities of the worts were reduced when the mashes were supplemented by preparations of bacterial enzymes. Enzyme additions also improved extract recoveries from all-malt mashes and reduced the viscosities of the derived worts. Using a temperature programmed mashing cycle and supplementary enzymes beers were prepared from a lager malt grist and grists in which the lager malt was partly replaced, by 30%, with extruded barley or extruded wheat, or extruded maize or wheat flour pellets. In every case wort was recovered relatively easily, the worts fermented normally and the beers were all fully acceptable, although their flavours did differ. However, in contrast to results of preliminary brewing trials, the head retentions of the beers made with adjuncts were unusually low, possibly because of particular enzyme additions.  相似文献   

7.
In the brewing industry, barley malt is often partially replaced with adjuncts (unmalted barley, wheat, rice, sorghum and corn in different forms). It is crucial, however, to preserve constant quality in the beer to meet the expectations of consumers. In this work, how the addition of corn grist (10 and 20%) influences the quality of wort and beer was examined. The following parameters were analysed: wort colour, dimethyl sulphide (DMS) and protein content, non‐fermentable extract, extract drop during fermentation, alcohol content and the attenuation level of the beer, together with filtration performance. The samples (all‐malt, and adjunct at 10 and 20% corn grist) were industrial worts and the beers produced in a commercial brewery (3000 hL fermentation tanks). The application of 10 and 20% corn grist had an effect on the wort colour, making it slightly lighter (11.1 and 10.5°EBC, respectively) than the reference barley malt wort (12.2°EBC). The free amino nitrogen level, DMS and non‐fermentable extract were significantly lower in the worts produced with the adjunct; the alcohol content and attenuation levels were higher in the beers produced with adjunct. The use of corn grist, at the level of up to 20% of total load, appears to affect some of the technological aspects of wort and beer production, but it does not significantly influence the final product characteristics. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

8.
It was confirmed that wort from malt resteeped in a solution of formaldehyde (1000 mg./litre), had a low level of anthocyanogens. It was shown that beer brewed from this malt had a lesser tendency to form haze than beer brewed from a malt resteeped in water. Malt yielding wort with usefully reduced levels of anthocyanogens could be prepared by adding formaldehyde (500–1000 mg./litre), to the final steep, in an otherwise conventional malting sequence. The rapid rate of haze formation that occurred in beers to which formalin had been added was shown to be a useful, quick guide to their stability under different storage conditions. When hydrogen peroxide (100 mg./litre) mashing liquor was added to mashes it reduced the anthocyanogen levels of the wort. The beers prepared from treated mashes were remarkably slow to form haze. The effect was greatest when hydrogen peroxide was added in small increments throughout the mashing period. The other alterations in wort characteristics resulting from this process, including marginal increases in colour and decreases in fermentability, were small. In most trials the treatment did not significantly alter the flavour of the beer. Charcoal (Norit, N.K.), added to the mash (500 mg./kg. grist), or to the copper (500 mg./kg. grist), reduced the anthocyanogen contents of the worts; the final beers had greatly enhanced shelf-lives. Charcoal was most effective when spread over the surface of the mash at the start of sparging.  相似文献   

9.
Beer production with up to 40% unmalted cereals such as barley, wheat, rice and maize is legally allowed and thus practised in many European countries. The use of oats and sorghum as brewing adjuncts has great potential for creating new beer types/flavours and saving costs. In contrast to oats, sorghum is not as well known within Europe; however, its versatility makes it a very promising crop for exploitation in these temperate‐zone regions. This review describes the brewing‐relevant characteristics of unmalted oat and sorghum grain, investigates the role and properties of endogenous/exogenous enzymes during mashing, discusses the processability/quality of mashes, worts and beers produced with up to 40% oat or sorghum adjunct, and examines the effectiveness/limitations of endogenous enzymes as well as the benefits of the application of exogenous enzymes. Copyright © 2014 The Institute of Brewing & Distilling  相似文献   

10.
Sorghum malt α-glucosidase activity was highest at pH 3.75 while that of barley malt was highest at pH 4.6. At pH 5.4 employed in mashing sorghum malt α-glucosidase was more active than the corresponding enzyme of barley malt. α-Glucosidase was partly extracted in water but was readily extracted when L-cysteine was included in the extraction buffer, pH 8. Sorghum malt made at 30°C had higher α-glucosidase activities than the corresponding malts made at 20°C and 25°C. Nevertheless, the sorghum malts made at 20°C and 25°C produced worts which contained more glucose than worts of malt made at 30°C. Although barley malts contained more α-glucosidase activity than sorghum malts, the worts of barley had the lowest levels of glucose. The limitation to maltose production in sorghum worts, produced at 65°C, is due to inadequate gelatinization of starch and not to limitation to β-amylase and α-amylase activities. Gelatinization of the starch granules of sorghum malt in the decantation mashing procedure resulted in the production of sorghum worts which contained high levels of maltose, especially when sorghum malt was produced at 30°C. Although the β-amylase and α-amylase levels of barley malt was significantly higher than those of sorghum malted optimally at 30°C, sorghum worts contained higher levels of glucose and equivalent levels of maltose to those of barley malt. It would appear that the individual activities of α-glucosidase, α-amylase and β-amylase of sorghum malts or barley malts do not correlate with the sugar profile of the corresponding worts. In consequence, specifications for enzymes such as α-amylase and β-amylase in malt is best set at a range of values rather than as single values.  相似文献   

11.
A three‐factorial experiment with a level of confidence of P < 0.05 was performed to study fermentable carbohydrate depletion and ethanol production during 144 h fermentations of lager beers produced with barley malt (BM), sorghum malt (SM), refined maize (MZ) or waxy sorghum (WXSOR) grits treated during mashing with or without amyloglucosidase (AMG). The percentage glucose, maltose and maltotriose, based on total fermentable carbohydrates for the BM wort was 20, 68 and 13% and for the SM wort 35, 48 and 17% respectively. Treatment with AMG increased wort glucose from 9.3 to 24.5 g/L wort and total fermentable sugar equivalents, expressed as g glucose/L, from 59.2 to 72.6 g/L wort. The SM worts had approximately 50% more glucose and 40% less initial maltose content respectively compared to the BM worts. The WXSOR grits produced worts and beers with similar properties to those produced from the MZ adjuncts. AMG addition led to a >2.5 fold increment in wort glucose and 23% in total fermentable carbohydrate content. Linear regression analysis determined that the consumption rate of fermentable carbohydrates during fermentation followed first order reaction kinetics. Depletion times to reach 50% of the initial concentrations of glucose, maltose and maltotriose were 49, 128 and 125 h, respectively, clearly indicating that the fermenting yeast preferred glucose. Maltose and maltotriose depletion times of the AMG treated worts were significantly faster and lower, respectively, when compared with the untreated worts. At the end of the fermentation, the BM beers contained higher ethanol levels (5.1% v/v) than the SM beers (3.9% v/v). For AMG treated beers, no significant differences in ethanol content were observed among samples mashed with BM and beers produced from SM and MZ grits. The results demonstrated that AMG could be used to increase the initial concentration of glucose and total fermentable carbohydrates thus decreasing dextrin levels, especially from sorghum mashes.  相似文献   

12.
Worts made from raw sorghum and enzymes were successfully fermented even though the level of FAN present (51 mg/l) is well below that essential for fermentation of wort made from malted barley. Changes in typical fermentation parameters such as specific gravity, pH uptake of free amino nitrogen (FAN) and ammonium ions mirrored the increase in yeast cell concentration. Yeast viability remained high throughout the fermentation. Under identical fermentation conditions, malted barley worts showed typical fermentation profiles. However, malted barley worts with specific gravity maintained by the addition of D-glucose, but in which the FAN was diluted to a level similar to that found in a wort made from sorghum and enzymes, fermented more slowly and failed to attenuate fully. Five consecutive fermentations, using yeast cropped from the preceding to pitch the current fermentation were conducted. The specific gravity profiles were essentially the same in all five fermentations. Final values of pH, yeast in suspension, yeast viability and FAN were also indistinguishable. The yeast crop taken from fermentations of worts made from raw sorghum and enzymes represented a 5-fold increase over the initial pitching rate. When compared to commercial beers, the beers derived from fermentation of worts made from raw sorghum and enzymes contained lower levels of ethyl acetate, and higher levels of both 2- and 3-methyl butanol. In the beers derived from sorghum, isobutanol was always less than 20% of the total higher alcohol concentration.  相似文献   

13.
Barley malt is the preferred brewing material these days because of its high extract content and high enzyme activities. However, when substituting malted barley with oats to create a unique beer flavor and aroma, endogenous malt enzymes become the limiting factor. Therefore, the objectives of this study were to evaluate the effect of 10–40 % unmalted oats on the quality of high-gravity mashes/worts and to investigate the limitations of endogenous malt enzymes as well as the benefits of the application of industrial enzymes. The enzyme mix Ondea® Pro was found to be particularly suitable for mashing with unmalted oats and was therefore used in the present rheological tests and laboratory-scale mashing trials. In order to gain detailed information about the biochemical processes occurring during mashing, the quality of mashes was comprehensively analyzed after each mash rest using standard methods described by Mitteleuropäische Brautechnische Analysenkommission and Lab-on-a-Chip capillary electrophoresis. Mashing with up to 40 % oats resulted in increased mash consistencies, color/pH (20 °C) values, β-glucan concentrations, wort viscosities 12.0 %, and filtration times as well as decreased FAN and extract contents. The application of Ondea® Pro enormously increased the color of worts despite lower pH values but considerably improved the quality and processability of 30 or 40 % oat-containing mashes/worts. However, the substitution of up to 20 % barley malt with unmalted oats can easily be realized without the addition of exogenous enzymes.  相似文献   

14.
Preliminary microbiological studies carried out on sorghum grains showed that the major microorganisms found were mainly bacteria and that aflatoxin‐producing fungi were not found. The effect of added commercial enzyme preparations and different infusion mashing temperatures on extract yield, from sorghum malted at 30 °C, was studied. The infusion mashing method (65 °C) developed for mashing well‐modified barley malt produces poor extract yields with sorghum malt. The extract yield from the sorghum malt in this study was very low with infusion mashing at 65 °C, without the addition of commercial enzyme preparations. A higher extract yield was obtained from the sorghum malt, without the commercial enzyme addition, when using infusion mashing at 85 °C. Both infusion mashing temperatures (65 and 85 °C) showed an improved extract yield over the control malt when commercial enzyme preparations were used during mashing of the sorghum malt. The added enzyme preparations resulted in a higher extract yield from the germinated sorghum when infusion mashing was performed at 65 °C over mashing at 85 °C. The use of individual commercial enzymes (α‐amylase, β‐glucanase, protease, xylanase, saccharifying enzyme and combinations of some hydrolytic enzyme) increased extract yields, when complemented with the enzymes that had developed in the sorghum malt. Copyright © 2016 The Institute of Brewing & Distilling  相似文献   

15.
A mashing regime was developed using 100% raw sorghum which enabled commercially acceptable hot water extracts to be obtained in 85 minutes with minimal use of a heat stable α-amylase and proteolytic enzymes. This gave worts of HWE 295 1°/kg, with FAN levels of about 40 mg/l and ammonium ion concentration of about 60 mg/l. Higher, but commercially unacceptable, levels of proteolytic enzymes gave worts with FAN from 84.5 to 95 (mg/l). Addition of an amyloglucosidase as the commercial preparation Amylo300L, was required to convert the HWE to fermentable extract. The addition of Amylo300L, increased the DP1, DP2 and DP3 carbohydrate fractions of the worts from 22% to more than 90% of the total, compared to about 80% for a wort made from malted barley without the use of enzymes. Two different proteolytic enzymes gave different extracts and FAN contents presumably reflecting either differences in susceptibilities of the sorghum to the two enzymes or the presence of different additional enzyme activities in the different preparations. The level of ammonium ions in malted barley worts was 86 mg/l and up to 88 mg/l in worts produced from sorghum and enzymes. Enzyme addition produced increased levels of ammonia. The content of Group A (the most readily assimilated) amino acids was proportionally higher in sorghum worts compared to malted barley wort. Worts made from raw sorghum and enzymes, containing as little as 40 mg/l FAN, were fully attenuated. The yeast consumed about 35 mg/l FAN and 45 mg/l ammonium ions. Under identical fermentation conditions, the same yeast, fermenting a malted barley wort of comparable extract consumed 104 mg/l FAN and 37 mg/l ammonium ions.  相似文献   

16.
On the basis of results obtained in micro-brews four beers were produced on a 50 litre scale with 50% of the following adjunct materials: debranned sorghum, extruded debranned sorghum, corn starch and extruded corn starch. The extruded materials were processed in an infusion mash while the regular adjuncts were submitted to a preliminary boil, followed by a cooling step (to 45°C) and a subsequent infusion mash. The results indicate a normal fermentation in all cases, no impact of extrusion upon the colloidal stability and the colour of the resulting beers although the saccharification and filtration rates are seriously impaired during the production process inter alia due to the presence of intact starch granules in the extruded products. If these problems could be overcome, it seems perfectly possible to produce beers with high percentages of extruded adjuncts containing no nitrogeneous substances. Indeed, extrusion of debranned sorghum leads to the presence in beer of nitrogen containing compounds (e.g. alkylpyrazines) responsible for highly obnoxious flavours described by a professional taste panel as giving “artificial”, “coffee”, “burnt” or “caramel” odours. These negative flavour characteristics are absent in the beer produced with 50% of extruded corn starch.  相似文献   

17.
The sugar profile of wort from laboratory malted barley, malted sorghum, unmalted barley and unmalted sorghum grains mashed with commercial enzyme preparations were studied. Similar levels of glucose to maltose (1:7) were observed in wort of malted barley and malted sorghum. Mashing barley or sorghum grains with commercial enzymes changed the glucose to maltose ratio in both worts, with a greater change in wort from sorghum grains. Although hydrolysis with commercial enzymes released more glucose from maltose in sorghum wort, the same treatment retained more maltose in barley wort. Adding malted barley to sorghum grains mashed with commercial enzymes restored the glucose to maltose ratio in sorghum mash. Fermentation of wort produced from all barley malt (ABM) mash and commercial enzyme/barley malt/sorghum adjunct (CEBMSA) mash of similar wort gravity was also studied. ABM and CEBMSA worts exhibited similar glucose to maltose ratios and similar amino acid spectra. However, ABM released more individual amino acids and five times more proline than wort from commercial enzyme/barley malt/sorghum adjunct. ABM produced 27% more glucose and 7% more maltose than CEBMSA. After fermentation, ABM mash produced 9.45% ABV whilst commercial enzyme/barley malt/sorghum adjunct mash produced 9.06% ABV. Restoration of the glucose/maltose ratio in the CEBMSA mash produced wort with a sugar balance required for high gravity brewing. © 2020 The Institute of Brewing & Distilling  相似文献   

18.
A method is described whereby the precursors of 2-trans-nonenal may be estimated in worts and beers. Treatment of malt grist or malt with a variety of polar substances is shown to reduce or eliminate the production of nonenal precursors during mashing. Beers made from worts so treated have enhanced flavour stability over those made conventionally.  相似文献   

19.
The malting characteristics of the finger millet variety Imele (FI), sorghum varieties Andivo (SA) and Ingumba (SI) and the barley variety Research (BR) were compared in relation to the brewing of traditional African opaque beer as well as conventional lager beer. The investigations include (a) the effect of steeping and germination conditions, (b) the influence of gibberellic acid and kilning temperature on the activity of important brewing enzymes and (c) an appraisal of the brewing potential of the worts obtained. FI, SA and SI malts were considered unsuitable as barley malt extenders for conventional lager beers, but FI and possibly SI malts would be suitable for tropical lager beer manufacture.  相似文献   

20.
Initially, large‐scale lager beer brewing with sorghum malts proved highly intractable due to a number of biochemical problems including: high malting losses estimated at 10–30% as against 8–10% for barley; high gelatinisation temperatures which limited starch solubilisation/ hydrolysis by the amylolytic enzymes during mashing; low extract yield/low diastatic power (DP) due to inadequate hydrolytic enzyme activities especially β‐amylase; low free α‐amino nitrogen (FAN) due to inadequate proteolysis limiting yeast growth during fermentation; high wort viscosities/beer filtration problems due to low endo‐β‐1,3; 1–4‐glucanase activities on the endosperm cell walls causing the release of some β‐glucans. Strident research efforts using improved Nigerian sorghum malt varieties (SK5912, KSV8 and ICSV400) have reported some encouraging results. The knowledge of the biochemical integrity of the endo‐β‐glucanases of the sorghum malt is helping to elucidate their mode of activity in the depolymerisation of the β‐glucans. This is bound to ensure process efficiency in sorghum beer brewing, reduce beer production costs and ultimately, produce a Pilsner‐type of lager beer with 100% sorghum malt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号