首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Tandem mass spectrometry (MS/MS) plays an important role in the unambiguous identification and structural elucidation of biomolecules. In contrast to conventional MS/MS approaches for protein identification where an individual polypeptide is sequentially selected and dissociated, a multiplexed-MS/MS approach increases throughput by selecting several peptides for simultaneous dissociation using either infrared multiphoton dissociation (IRMPD) or multiple frequency sustained off-resonance irradiation (SORI) collisionally induced dissociation (CID). The high mass measurement accuracy and resolution of FTICR combined with knowledge of peptide dissociation pathways allows the fragments arising from several different parent ions to be assigned. Herein we report the application of multiplexed-MS/MS coupled with on-line separations for the identification of peptides present in complex mixtures (i.e., whole cell lysate digests). Software was developed to enable "on-the-fly" data-dependent peak selection of a subset of polypeptides from each FTICR MS acquisition. In the subsequent MS/MS acquisitions, several coeluting peptides were fragmented simultaneously using either IRMPD or SORI-CID techniques. The utility of this approach has been demonstrated using a bovine serum albumin tryptic digest separated by capillary LC where multiple peptides were readily identified in single MS/MS acquisitions. We also present initial results from multiplexed-MS/MS analysis of a D. radiodurans whole cell digest to illustrate the utility of this approach for high-throughput analysis of a bacterial proteome.  相似文献   

2.
A four-channel multiplexed electrospray inlet system (MUX) coupled to a triple quadrupole mass spectrometer was investigated as a higher throughput approach to quantitative analysis. Four discrete samples may be simultaneously analyzed by virtue of a rotating sampler with a concomitant 4-fold increase in analytical throughput. Although absolute sensitivity was reduced using the MUX interface compared with analysis using traditional single electrospray interface, reproducibility of response was shown to be comparable. Source robustness was established for the analysis of both aqueous drug standards and drugs in biological media, and linearity of response for a test compound, diazepam, was demonstrated over 2 orders of magnitude. Analyte-dependent response differences were exhibited between the four channels of the interface, and this led to the overall conclusion that samples to be compared quantitatively must be analyzed through the same sprayer. In addition, each channel must be independently calibrated to afford true quantification. Should a deuterated internal standard be employed, however, quantitative comparisons can be made across channels. An HPLC pumping system providing individual back-pressure regulation to each channel was shown to provide adequate chromatography even in the event of a channel blockage. Furthermore, following multiple injections of biological samples onto the MUX interface, an eluent flow diversion was integrated into the first part of each analytical run. This served to prevent source fouling, and thus, no detrimental effects to response reproducibility or sensitivity were observed.  相似文献   

3.
Nitration of protein tyrosine residues is very often regarded as a molecular signal of peroxynitrite formation during development, oxidative stress, and aging. However, protein nitration might also have biological functions comparable to protein phosphorylation, mainly in redox signaling and in signal transduction. The major challenge in the proteomic analysis of nitroproteins is the need to discriminate modified proteins, usually occurring at substoichiometric levels from the large amount of nonmodified proteins. Moreover, precise localization of the nitration site is often required to fully describe the biological process. Existing methodologies essentially rely on immunochemical techniques either using 2D-PAGE fractionation in combination with western blot analyses or exploiting immunoaffinity procedures to selectively capture nitrated proteins. Here we report a totally new approach involving dansyl chloride labeling of the nitration sites that rely on the enormous potential of MSn analysis. The tryptic digest from the entire protein mixture is directly analyzed by MS on a linear ion trap mass spectrometer. Discrimination between nitro- and unmodified peptide is based on two selectivity criteria obtained by combining a precursor ion scan and an MS3 analysis. This new procedure was successfully applied to the identification of 3-nitrotyrosine residues in complex protein mixtures.  相似文献   

4.
TwinPeaks, a close variant of the SEQUEST protein identification algorithm, is capable of unrestricted, large-scale, identification of post-translation modifications (PTMs). TwinPeaks is applied on a sample of 100441 tandem mass spectra from the HUPO Plasma Proteome Project data set, with full non-redundant human as a reference protein database. With a 3.5% error rate, TwinPeaks identifies a collection of 539 spectra that were not identified by the usual PTM-restricted identification algorithm. At this error rate, TwinPeaks increases the rate of spectra identifications by at least 17.6%, making unrestricted PTM identification an integral part of proteomics.  相似文献   

5.
Hu A  Tsai PJ  Ho YP 《Analytical chemistry》2005,77(5):1488-1495
In this paper, we propose a new strategy for identifying specific bacteria in bacterial mixtures by using CE-selective MS/MS of peptide marker ions associated with the bacteria of interest. We searched the CE-MS/MS spectra acquired from the proteolytic digests of pure bacterial cell extracts against protein databases. The identified peptides that match the protein associated with the corresponding species were selected as marker ions for bacterial identification. Specific peptide marker ions were obtained for each of the following three pathogens: Pseudomonas aeruginasa, Staphylococcus aureus, and Staphylococcus epidermidis. To identify a bacterial species in a sample, we performed CE-MS/MS analysis of the selected marker ions in the proteolytic digest of the cell extract and then performed protein database searches. The selected peptides that we identified correctly from Xcorr values ranking at the top of the search results allowed us to identify the corresponding bacterial species present in the sample. We have applied this method successfully to the identification of various mixtures of the three pathogens. Even minor bacterial species present at a concentration of 1% can be identified with great confidence. This method for CE-MS/MS analysis of bacteria-specific marker peptides provides excellent selectivity and high accuracy when identifying bacterial species in complex systems. In addition, we have used this approach to identify P. aeruginasa in a saliva sample spiked with E.coli and P. aeruginasa.  相似文献   

6.
Ion mobility spectrometry-time-of-flight mass spectrometry (IMS-TOFMS) has been increasingly used in analysis of complex biological samples. A major challenge is to transform IMS-TOFMS to a high-sensitivity, high-throughput platform, for example, for proteomics applications. In this work, we have developed and integrated three advanced technologies, including efficient ion accumulation in an ion funnel trap prior to IMS separation, multiplexing (MP) of ion packet introduction into the IMS drift tube, and signal detection with an analog-to-digital converter, into the IMS-TOFMS system for the high-throughput analysis of highly complex proteolytic digests of, for example, blood plasma. To better address variable sample complexity, we have developed and rigorously evaluated a novel dynamic MP approach that ensures correlation of the analyzer performance with an ion source function and provides the improved dynamic range and sensitivity throughout the experiment. The MP IMS-TOFMS instrument has been shown to reliably detect peptides at a concentration of 1 nM in the presence of a highly complex matrix, as well as to provide a 3 orders of magnitude dynamic range and a mass measurement accuracy of better than 5 ppm. When matched against human blood plasma database, the detected IMS-TOF features were found to yield approximately 700 unique peptide identifications at a false discovery rate (FDR) of approximately 7.5%. Accounting for IMS information gave rise to a projected FDR of approximately 4%. Signal reproducibility was found to be greater than 80%, while the variations in the number of unique peptide identifications were <15%. A single sample analysis was completed in 15 min that constitutes almost 1 order of magnitude improvement compared to a more conventional LC-MS approach.  相似文献   

7.
The structural elucidation of organic compounds in complex biofluids and tissues remains a significant analytical challenge. For mass spectrometry, the manual interpretation of collision-induced dissociation (CID) mass spectra is cumbersome and requires expert knowledge, as the fragmentation mechanisms of ions formed from small molecules are not completely understood. The automated identification of compounds is generally limited to searching in spectral libraries. Here, we present a method for interpreting the CID spectra of the organic compound's protonated ions by computing fragmentation trees that establish not only the molecular formula of the compound and all fragment ions but also the dependencies between fragment ions. This is an important step toward the automated identification of unknowns from the CID spectra of compounds that are not in any database.  相似文献   

8.
We describe a new statistical scorer for tandem mass spectrometry. The scorer is based on the probability that fragments with given chemical properties create measured intensity levels in the experimental spectrum. The scorer's parameters are computed using a fully automated procedure. Benchmarking the new scorer on a large set of experimental spectra, we show that it performs significantly better than the widely used cross-correlation scoring algorithm of Eng et al. (Eng, J. K; McKormack, A. L.; Yates, J. R. J. Am. Soc. Mass Spectrom. 1994, 5, 976-989.).  相似文献   

9.
Chan TW  Duan L  Sze TP 《Analytical chemistry》2002,74(20):5282-5289
A new analytical scheme based on a combination of scanning FTMS, multiple-ion filling, and potential ramping methods has been developed for accurate molecular mass measurement of peptide and protein mixtures using broadband MALDI-FTMS. The scanning FTMS method alleviates the problems of time-of-flight effect for FTMS with an external MALDI ion source and provides a systematic means of sampling ions of different mass-to-charge ratios. The multiple-ion filling method is an effective way of trapping and retaining ions from successive ion generation/accumulation events. The potential ramping method allows the use of high trapping potentials for effective trapping of ions of high kinetic energies and the use of low trapping potentials for high-resolution detection of the trapped ions. With this analytical scheme, high-resolution broadband MALDI mass spectra covering a wide mass range of 1000-5700 Da were obtained. For peptide mixtures of mass range 1000-3500 Da, calibration errors of low part-per-millions were demonstrated using a parabolic calibration equation f2 = ML1/m2 + ML2/m + ML3, where f is the measured cyclotron frequency and ML1, ML2, and ML3 are calibration constants.  相似文献   

10.
Mass spectrometry based metabolomics represents a new area for bioinformatics technology development. While the computational tools currently available such as XCMS statistically assess and rank LC-MS features, they do not provide information about their structural identity. XCMS(2) is an open source software package which has been developed to automatically search tandem mass spectrometry (MS/MS) data against high quality experimental MS/MS data from known metabolites contained in a reference library (METLIN). Scoring of hits is based on a "shared peak count" method that identifies masses of fragment ions shared between the analytical and reference MS/MS spectra. Another functional component of XCMS(2) is the capability of providing structural information for unknown metabolites, which are not in the METLIN database. This "similarity search" algorithm has been developed to detect possible structural motifs in the unknown metabolite which may produce characteristic fragment ions and neutral losses to related reference compounds contained in METLIN, even if the precursor masses are not the same.  相似文献   

11.
A method is described for the rapid identification of oligosaccharides employing a library of tandem MS spectra. Identification is aided by software that compares the sample tandem MS to those in the library. The method incorporates quadrupole time-of-flight mass spectrometry along with an annotated oligosaccharide (OS) structure library and the MassHunter Personal Compound Database and Library (PCDL) software. With an automated spectra search, OS structures in different samples are readily identified. This method is shown to be useful in the study of milk oligosaccharides but can be readily applied to oligosaccharide pools in other biological tissues.  相似文献   

12.
The traditional approach to the identification of peptides in complex biological samples integrally involves the use of tandem mass spectrometry to generate a unique fragmentation pattern in order to accurately assign its identity to a particular protein. In this article we describe the theoretical basis for a new paradigm for the identification of peptides and proteins. This methodology employs the use of accurate mass and peptide isoelectric point (pI) as identification criteria, and represents a change in focus from current tandem mass spectrometry-dominated approaches. A mathematical derivation of the false positive rate associated with accurate mass and pI measurements is presented to demonstrate the utility of the technique. The equations for calculation of the experimental false positive rate allow for the determination of the validity of the data. The false positive rate issue examined in detail here is not restricted to accurate mass-based approaches, but also has application to the tandem mass spectrometry community as well. The theoretical proteomes of Escherichia coli and Rattus norvegicus are used to evaluate the efficacy of this approach. The power of the technique is demonstrated by analyzing a series of peptides with the same monoisotopic masses but with differing isoelectric points. Finally, the speed of algorithm when combined with the experimental peptide analysis has the potential to rapidly accelerate the protein identification process.  相似文献   

13.
A novel methodology for the automated de novo identification of peptides via integer linear optimization (also referred to as integer linear programming or ILP) and tandem mass spectrometry is presented in this article. The various features of the mathematical model are presented and examples are used to illustrate the key concepts of the proposed approach. A variety of challenging peptide identification problems, accompanied by a comparative study with five state-of-the-art methods, are examined to illustrate the proposed method's ability to address (a) residue-dependent fragmentation properties that result in missing ion peaks and (b) the variability of resolution in different mass analyzers. A preprocessing algorithm is utilized to identify important m/z values in the tandem mass spectrum. Missing peaks, due to residue-dependent fragmentation characteristics, are dealt with using a two-stage algorithmic framework. A cross-correlation approach is used to resolve missing amino acid assignments and to select the most probable peptide by comparing the theoretical spectra of the candidate sequences that were generated from the ILP sequencing stages with the experimental tandem mass spectrum. The novel, proposed de novo method, denoted as PILOT, is compared to existing popular methods such as Lutefisk, PEAKS, PepNovo, EigenMS, and NovoHMM for a set of spectra resulting from QTOF and ion trap instruments.  相似文献   

14.
A method for speciation and identification of organoselenium metabolites found in human urine samples using high performance liquid chromatography/inductively coupled plasma mass spectrometry (HPLC/ICP-MS) and tandem mass spectrometry (MS/MS) is described. Reversed-phase chromatographic separation was used for sample fractionation with the ICP-MS functioning as an element-selective detector, and six distinct selenium-containing species were detected in a human urine sample. Fractions were then collected and analyzed using a triple quadrupole mass spectrometer with electrospray ionization and collision-induced dissociation to obtain structural information. The first two fractions were identified specifically as selenomethionine and selenocystamine, estimated to be present at approximately 11 and 40 ppb, respectively. To the best of our knowledge, this is the first time these two metabolites have been positively identified in human urine.  相似文献   

15.
Hemoglobin-based oxygen therapeutics are prepared by reaction of hemoglobin with cross-linking molecules and are utilized as blood substitutes. They can be used as doping agents to increase the oxygen-carrying capacity of hemoglobin. We have compared a glutaraldehyde-polymerized bovine hemoglobin (Oxyglobin, Biopure Corp.) with natural bovine hemoglobin by mass spectrometry in order to detect specific fragment ions of the cross-linked protein for further potential applications in doping control of human blood samples. HCl acid (6 N) hydrolysis was performed in parallel on both proteins. Hydrolysates were then analyzed by direct infusion electrospray mass spectrometry (ESIMS) using a triple quadrupole mass spectrometer. Confirmation and precision were obtained by LC-ESIMS(n) experiments performed on an ion trap mass spectrometer. Chromatographic and mass spectrometry data allowed detection of two potential Oxyglobin-specific ions--m/z 299 and 399--that were shown to lose a 159 u neutral fragment under collision-induced dissociation conditions. Thus, monitoring of constant neutral loss of 159 u on acid hydrolysates of human serum samples spiked with different amounts of Oxyglobin has proved to be an efficient screening method to specifically detect and identify Oxyglobin. LC-MS of the spiked serum sample hydrolysates enabled detection of Oxyglobin at a detection limit of 4 g x L(-1).  相似文献   

16.
Li FA  Wu MC  Her GR 《Analytical chemistry》2006,78(15):5316-5321
A four-channel multiplexed electrospray capillary electrophoresis interface has been developed. This new interface permits up to four capillary electrophoresis columns to be sampled sequentially by means of a stepper motor and a notched rotating plate assembly, which at any instant occludes all but a single sprayer. In this design, four sheath liquid electrospray probes are oriented in a circular array situated 90 degrees relative to one another. The rotating metal disk, which contains a one-quarter notch, is mounted to the stepper motor assembly and is located between the sprayers and the entrance aperture of an ion trap mass spectrometer. By using the data acquisition signal from the ion trap mass spectrometer, the scan event is synchronized with the rotation of the metal disk. With this device, four discrete sample streams can be simultaneously analyzed, resulting in a 4-fold increase in analytical throughput.  相似文献   

17.
Mass spectrometry and tandem mass spectrometry of citrus limonoids   总被引:2,自引:0,他引:2  
Methods for atmospheric pressure chemical ionization tandem mass spectrometry (APCI-MS/MS) of citrus limonoid aglycones and electrospray ionization tandem mass spectrometry (ESI-MS/MS) of limonoid glucosides are reported. The fragmentation patterns of four citrus limonoid aglycones (limonin, nomilin, obacunone, and deacetylnomilin) and six limonoid glucosides, that is, limonin 17-beta-D-glucopyranoside (LG), nomilin 17-beta-D-glucopyranoside (NG), nomilinic acid 17-beta-D-glucopyranoside (NAG), deacetyl nomilinic acid 17-beta-D-glucopyranoside (DNAG), obacunone 17-beta-D-glucopyranoside (OG), and obacunoic acid 17-beta-D-glucopyranoside (OAG) were investigated using a quadruple mass spectrometer in low-energy collisionally activated dissociation (CAD). The four limonoid aglycones and four limonoid glucosides (LG, OG, NAG, and DNAG) were purified from citrus seeds; the other two limonoid glucosides (NG and OAG) were tentatively identified in the crude extract of grapefruit seeds by ESI mass spectrometry in both positive and negative ion analysis. Ammonium hydroxide or acetic acid was added to the mobile phase to facilitate ionization. During positive ion APCI analysis of limonoid aglycones, protonated molecular ion, [M + H]+, or adduct ion, [M + NH3 + H]-, was formed as base peaks when ammonium hydroxide was added to the mobile phase. Molecular anions or adduct ions with acetic acid ([M + HOAc - H] and [M + HOAc]-) or a deprotonated molecular ion were produced during negative ion APCI analysis of limonoid aglycones, depending on the mobile-phase modifier used. Positive ion ESI-MS of limonoid glucosides produced adduct ions of [M + H + NH3]+, [M + Na]+, and [M + K]+ when ammonium hydroxide was added to the mobile phase. After collisionally activated dissociation (CAD) of the limonoid aglycone molecular ions in negative ion APCI analysis, fragment ions indicated structural information of the precursor ions, showing the presence of methyl, carboxyl, and oxygenated ring structure. CAD of the adduct ion [M + H + NH3]+ of limonoid glucosides produced the aglycone moiety corresponding to each glucoside. The combination of mass spectrometry and tandem mass spectrometry provides a powerful technique for identification and characterization of citrus limonoids.  相似文献   

18.
A highly specific and sensitive method is described for determining taxol, cephalomannine, and baccatin III in crude plant extracts. Radical anions of the taxanes are formed by desorption chemical ionization, and a parent tandem mass spectrometric scan is used to recognize these compounds by their characteristic dissociations. The limit of detection of the individual taxanes in typical plant matrices is less than 500 pg when all three species are screened simultaneously. Because of the sensitivity of the method, extraction times can be shortened to 30 min and crude extracts can be examined at the rate of 6/h. Detection of all three taxanes extracted from a single Taxus cuspidata needle in a combined extraction/analysis time of less than 1 h is demonstrated.  相似文献   

19.
A supercritical fluid chromatograph was interfaced to a mass spectrometer, and the system was evaluated for applications requiring high sample throughput. Experiments presented demonstrate the high-speed separation capability of supercritical fluid chromatography (SFC) and the effectiveness of supercritical fluid chromatography/mass spectrometry (SFC/MS) for fast, accurate determinations of multicomponent mixtures. A high-throughput liquid chromatography/mass spectrometry (LC/MS) analysis cycle time is reduced 3-fold using our general SFC/MS high-throughput method, resulting in substantial time saving for large numbers of samples. Unknown mixture characterization is improved due to the increased selectivity of SFC/MS compared to LC/MS. This was demonstrated with sample mixtures from a 96-well combinatorial library plate. In this paper, we report a negative mode atmospheric pressure chemical ionization (APCI) method for SFC/MS suitable for most of the components in library production mixtures. Flow injection analysis (FIA) also benefits from this SFC/MS system. A broader range of solvents is amenable to the SFC mobile phase compared with standard LC/MS solvents, and solutes elute more rapidly from the SFC/MS system, reducing sample carryover and cycle time. Finally, our instrumental setup allows for facile conversion between LC/MS and SFC/MS modes of operation.  相似文献   

20.
In shotgun proteomics, tandem mass spectrometry is used to identify peptides derived from proteins. After the peptides are detected, proteins are reassembled via a reference database of protein or gene information. Redundancy and homology between protein records in databases make it challenging to assign peptides to proteins that may or may not be in an experimental sample. Here, a probability model is introduced for determining the likelihood that peptides are correctly assigned to proteins. This model derives consistent probability estimates for assembled proteins. The probability scores make it easier to confidently identify proteins in complex samples and to accurately estimate false-positive rates. The algorithm based on this model is robust in creating protein complements from peptides from bovine protein standards, yeast, Ustilago maydis cell lysates, and Arabidopsis thaliana leaves. It also eliminates the side effects of redundancy and homology from the reference databases by employing a new concept of peptide grouping and by coherently distinguishing distinct peptides from unique records and shared peptides from homologous proteins. The software that runs the algorithm, called PANORAMICS, provides a tool to help analyze the data based on a researcher's knowledge about the sample. The software operates efficiently and quickly compared to other software platforms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号