首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
PURPOSE: An established method of cryostorage that might preserve the vascular and endothelial responses of human femoral arteries (HFAs) to be transplanted as allografts was studied. METHODS: HFAs were harvested from multiorgan donors and stored at 4 degrees C in Belzer solution before cryostorage. One hundred eleven HFA rings were isolated and randomly assigned to 1 control group of unfrozen HFAs and 2 groups of HFAs cryopreserved for 7 and 30 days, respectively. Cryopreservation was performed in Elohes solution containing dimethyl sulfoxide (1.8 mmol/L), and the rate of cooling was 1.6 degrees C/min, until -141 degrees C was reached. The contractile and relaxant responses of unfrozen and frozen/thawed arteries were assessed in organ bath by measurement of isometric force generated by the HFAs. RESULTS: After thawing, the maximal contractile responses to all the contracting agonists tested (KCl, U46619 [a thromboxane A2-mimetic], norepinephrine, serotonin, and endothelin-1) were in the range of 7% to 34% of the responses in unfrozen HFAs. The endothelium-independent relaxant responses to forskolin and verapamil were weakly altered, whereas the endothelium-independent relaxant responses to sodium nitroprusside were markedly reduced. Cryostorage of HFAs also resulted in a loss of the endothelium-dependent relaxant response to acetylcholine. The vascular and endothelial responses were similarly altered in the HFAs cryopreserved for 7 and 30 days. CONCLUSION: The cryopreservation method used provided a limited preservation of HFAs contractility, a good preservation of the endothelium-independent relaxant responses, but no apparent preservation of the endothelium-dependent relaxation. It is possible that further refinements of the cryopreservation protocol, such as a slower rate of cooling and a more controlled stepwise addition of dimethyl sulfoxide, might allow better post-thaw functional recovery of HFAs.  相似文献   

2.
Ischemia and reperfusion may damage myocytes and endothelium in jeopardized hearts. This study tested whether (1) endothelial dysfunction (reduced nitric oxide release) exists despite good contractile performance and (2) supplementation of blood cardioplegic solution with nitric oxide precursor L-arginine augments nitric oxide and restores endothelial function. Among 30 Yorkshire-Duroc pigs, 6 received standard glutamate/aspartate blood cardioplegic solution without global ischemia. Twenty-four underwent 20 minutes of 37 degrees C global ischemia. Six received normal blood reperfusion. In 18, the aortic clamp remained in place 30 more minutes and all received 3 infusions of blood cardioplegic solution. In 6, the blood cardioplegic solution was unaltered; in 6, the blood cardioplegic solution contained L-arginine (a nitric oxide precursor) at 2 mmol/L; in 6, the blood cardioplegic solution contained the nitric oxide synthase inhibitor L-nitro arginine methyl ester (L-NAME) at 1 mmol/L. Complete contractile and endothelial recovery occurred without ischemia. In jeopardized hearts, complete systolic recovery followed infusion of blood cardioplegic solution and of blood cardioplegic solution plus L-arginine. Conversely, contractility recovered approximately 40% after infusion of normal blood and blood cardioplegic solution plus L-NAME. Postischemic nitric oxide production fell 50% in the groups that received blood cardioplegic solution and blood cardioplegic solution plus L-NAME but was increased in the group that received blood cardioplegic solution L-arginine. In vivo endothelium-dependent vasodilator responses to acetylcholine recovered 75% +/- 5% of baseline in the blood cardioplegic solution plus L-arginine group, but less than 20% of baseline in other jeopardized hearts. Endothelium-independent smooth muscle responses to sodium nitroprusside were relatively unaltered. Myeloperoxidase activity (neutrophil accumulation) was similar in the blood cardioplegic solution (without ischemia) and blood cardioplegic solution plus L-arginine groups (0.01 +/- 0.002 vs 0.013 +/- 0.003 microgram/gm tissue). Myeloperoxidase activity was raised substantially to 0.033 +/- 0.002 microgram/gm after exposure to normal blood and to 0.025 +/- 0.003 microgram/gm after infusion of blood cardioplegic solution and was highest at 0.053 +/- 0.01 microgram/gm with exposure to blood cardioplegic solution plus L-NAME in jeopardized hearts. The discrepancy between contractile recovery and endothelial dysfunction in jeopardized muscle can be reversed by adding L-arginine to blood cardioplegic solution.  相似文献   

3.
BACKGROUND: The purpose of this study was to test the hypothesis that vasodilator responses of porcine coronary resistance arteries are increased by exercise training. METHODS AND RESULTS: Yucatan miniature swine were randomly divided into groups of exercise-trained (ET) and sedentary (SED) control pigs. ET pigs were placed on a progressive treadmill training program lasting 16 to 20 weeks, and SED pigs remained inactive during the same time period. Coronary resistance arteries 64 to 157 microns in diameter were isolated for in vitro evaluation of relaxation responses to the endothelium-independent dilators sodium nitroprusside (1 x 10(-10) to 1 x 10(-4) mol/L) and adenosine (1 x 10(-10) to 1 x 10(-5) mol/L) and to bradykinin (1 x 10(-13) to 3 x 10(-7) mol/L), an endothelium-dependent agent. Relaxation responses to adenosine and sodium nitroprusside were not altered by exercise training. Endothelium-dependent relaxation to bradykinin was enhanced in coronary resistance arteries from ET pigs (IC50: ET, 0.07 +/- 0.02 nmol/L; SED, 1.59 +/- 0.09 nmol/L). To determine whether prostanoids and/or the nitric oxide synthase pathway were involved in the ET-induced changes in bradykinin-induced vasodilation, responses to bradykinin were examined in coronary resistance arteries from both ET and SED pigs in the presence of indomethacin and in the presence of nitro-monomethyl L-arginine (L-NMMA). Both indomethacin and L-NMMA produced significant inhibition of the bradykinin-induced relaxation in vessels from both groups. Despite decreased bradykinin-induced relaxation after indomethacin, bradykinin-induced vasodilation was still enhanced in vessels from the ET group. L-NMMA caused greater inhibition of the bradykinin-induced relaxation in coronary resistance arteries from ET pigs relative to arteries from SED pigs and eliminated the training-induced enhancement of the bradykinin responses. CONCLUSIONS: These results suggest that exercise training enhances bradykinin-induced vasodilation through increased endothelium-derived relaxing factor/nitric oxide production by the L-arginine/nitric oxide synthase pathway.  相似文献   

4.
Little is known about how the vascular reactivity of the coronary microcirculation is affected by upstream atherosclerotic disease. We have examined, with a wire myograph, the responses of intramyocardial arteries from hearts in which the epicardial vessels were either free of atherosclerotic lesions (non-diseased group) or were affected by atherosclerosis (diseased group). Vasodilator responses of preconstricted vessels to substance P (84.1 +/- 12.6 compared to 42.0 +/- 19.7%) were less in vessels from the diseased group (p < 0.05). In contrast, the relaxation to bradykinin (70.2 +/- 21.2 compared to 100.6 +/- 7.9%) was increased in vessels from the diseased group (p < 0.05). The dilator responses to acetylcholine, adenosine diphosphate, histamine and sodium nitroprusside showed no significant differences between arteries from each group. 5-Hydroxytryptamine was without any significant vasodilator effect in arteries from either group. Assessment of contractile function revealed that the responses to 5-hydroxytryptamine, acetylcholine, U46619, endothelin-1 and L-N(G)-monomethylarginine in each group were not significantly different. Histamine, noradrenaline and dopamine were without any significant contractile response. These results demonstrate that upstream atherosclerosis does not confer any global impairment of endothelium-dependent vasorelaxant responses or smooth muscle hyperreactivity to vasoconstrictors in the arteries that penetrate the myocardium.  相似文献   

5.
BACKGROUND: The technique of intermittent antegrade warm blood cardioplegia (IAWBC) exposes the heart to brief periods of normothermic ischemia. This may impair endothelial function in coronary arteries. METHODS: Three cardioplegic technique were tested in porcine hearts arrested for 32 to 36 minutes and reperfused for 30 minutes: IAWBC, antegrade cold blood cardioplegia (ACBC), and antegrade cold crystalloid cardioplegia (ACCC). In the hearts arrested with IAWBC, three different intervals of ischemia were used: three 10-minute intervals (IAWBC1), two 15-minute intervals (IAWBC2), and one 30-minute interval (IAWBC3). Rings from the coronary arteries were used to evaluate in vitro the contractile responses to U46619 and the relaxant responses to bradykinin, A23187, and sodium nitroprusside. RESULTS: All six groups (treatment groups and control group) displayed similar responses to U46619 (30 nmol/L) and nitroprusside. In the IAWBC1, IAWBC2, AND ACBC groups, endothelium-dependent relaxations to bradykinin and A23187 were preserved compared with controls, whereas those of the ACCC and IAWBC3 groups were significantly impaired (bradykinin: control, 8.72 +/- 0.07; IAWBC1, 8.73 +/- 0.03; IAWBC2, 8.65 +/- 0.05; IAWBC3, 8.30 +/- 0.07 [p < 0.05]; ACBC, 8.50 +/- 0.03; ACCC, 8.25 +/- 0.09 [p < 0.05]; A23187: control, 7.07 +/- 0.08; IAWBC1, 7.07 +/- 0.06; IAWBC2, 7.04 +/- 0.03; IAWBC3, 6.64 +/- 0.01 [p < 0.05]; ACBC, 6.80 +/- 0.05; ACCC, 6.60 +/- 0.08 [p < 0.05]; nitroprusside: control, 6.19 +/- 0.1; IAWBC1, 6.19 +/- 0.07; IAWBC2, 6.03 +/- 0.03; IAWBC3, 6.08 +/- 0.05; ACBC, 6.04 +/- 0.2; ACCC, 6.05 +/- 0.03; all values are expressed as the negative logarithm of the concentration producing 50% of the maximal response). CONCLUSIONS: Myocardial preservation with IAWBC with ischemic intervals of 15 minutes or shorter does not alter the endothelium-dependent relaxation to bradykinin or A23187 in porcine coronary arteries, but these responses are significantly impaired by ACCC and IAWBC with an ischemic interval of 30 minutes.  相似文献   

6.
The effect of levcromakalim, an ATP-sensitive K+ channel opener, on isolated subcutaneous arteries from mammary tissues obtained from female patients undergoing reconstructive breast surgery was investigated. The small arteries were preserved in the University of Wisconsin (UW) solution. The contractile responses to K+ and 9,11-dideoxy-11a,9a-epoxy-methano-prostaglandin F2 alpha (U46619) and the relexant responses to levcromakalim and to the endothelium-dependent vasodilator, methacholine, in these arteries remained fully intact after preservation in UW solution for at least 5 days. The pD2 value and maximal relaxation obtained from the concentration-response curve of levcromakalim (n = 7) were 5.78 +/- 0.23 and 81 +/- 6%, respectively. The vasodilator effect of levcromakalim was significantly antagonised by the ATP-sensitive K+ channel blocker, glibenclamide (1 and 3 microM). In conclusion, isolated human arteries contain ATP-sensitive K+ channels, which can be modulated by K+ channel openers and blockers. Subcutaneous small arteries, as used in our experiments, appear to be very suitable for pharmacological experiments.  相似文献   

7.
The in vitro effects of angiotensin II (Ang II) in human vessels are not well studied. The development of specific Ang II-receptor antagonists has made it possible to delineate more carefully the receptor mechanisms involved. The objective of this study was twofold: to investigate the effect of Ang II on human coronary arteries and to study the effects of angiotensin II type 1 receptor blockade with losartan. The setting was contractile experiments with ring segments of coronary arteries. We observed that Ang II is a vasoconstrictor of human coronary arteries, with a pEC50 value of 9.26 +/- 0.22 and Emax of 68.7 +/- 9.61% of potassium-induced contraction. Losartan (10-100 nM) shifted the concentration-response curve of Ang II to the right, with pEC50 values of 7.64 +/- 0.10 and 7.00 +/- 0.15, respectively (p = 0.001), demonstrating the antagonistic properties of losartan. We also noted a decreased maximal response to Ang II after incubation of losartan, with Emax of 51.1 +/- 7.08% and 41.9 +/- 4.70% (p = 0.05), respectively. In conclusion, this is the first report describing the contractile effect of Ang II and the antagonizing effects of losartan in isolated human coronary arteries.  相似文献   

8.
The pig is increasingly being used in medical research, both as a model of the human cardiovascular system, and as a possible source of organs for xenotransplantation. However, little is known about the comparative functions of the vascular endothelium between porcine and human arteries. We have therefore compared the effects of two endothelium-dependent vasorelaxants, acetylcholine (ACh) and the Ca2+-ATPase inhibitor, cyclopiazonic acid (CPA) on the porcine and human isolated pulmonary artery using isometric tension recording. ACh and CPA produced endothelium-dependent relaxations of both the human and porcine pulmonary arteries. In the porcine pulmonary artery, the cyclo-oxygenase inhibitor, flurbiprofen had no effect on relaxations to ACh (Emax: control 67.8+/-8.8% versus 72.4+/-9.5% (n=11)) or CPA (Emax: control 79.6+/-5.0% versus 94.0+/-10.6% (n=7)). The nitric oxide synthase inhibitor, L-NAME converted relaxations to both ACh and CPA into contractile responses (maximum response: ACh 30.0+/-11.1% (n = 10); CPA 80.4+/-26.2% (n = 8) of U46619-induced tone). These contractile responses in the presence of L-NAME were abolished by flurbiprofen. In the human pulmonary artery, L-NAME and flurbiprofen partly attenuated relaxations to ACh (Emax: control: 45.1+/-12.1%; flurbiprofen: 33.4+/-13.5%; L-NAME: 10.1+/-7.2%) and CPA (Emax: control: 78.1+/-5.5%; flurbiprofen: 69.6+/-7.2%; L-NAME 37.9+/-10.7% of U46619-induced tone). These responses were abolished by the combination of both inhibitors. We have demonstrated that while the release of nitric oxide is important in responses to endothelium-dependent vasorelaxants in both human and porcine pulmonary arteries, in the human arteries, there is an important role for vasorelaxant prostanoids whilst in the porcine arteries, vasoconstrictor prostanoids are released.  相似文献   

9.
OBJECTIVE: Unmodified reperfusion without cardioplegia in minimally invasive direct coronary artery bypass grafting procedures causes endothelial dysfunction that may predispose to polymorphonuclear neutrophil-mediated myocardial injury. This study tested the hypothesis that ischemic preconditioning in a minimally invasive direct coronary artery bypass grafting model attenuates postischemic endothelial dysfunction in coronary vessels. METHODS: In anesthetized dogs, the left anterior descending coronary artery was occluded for 30 minutes and reperfused for 3 hours without ischemic preconditioning (no-ischemic preconditioning; n = 7); in 7 dogs, the left anterior descending occlusion was preceded by 5 minutes occlusion followed by 5 minutes of reperfusion. Relaxation responses to stimulators of nitric oxide synthase were used to evaluate endothelial function in arteries from the ischemic-reperfused (left anterior descending) and nonischemic (left circumflex coronary artery) zones. RESULTS: Stimulated endothelial-dependent relaxation of epicardial left anterior descending artery to incremental concentrations of acetylcholine in the no-ischemic preconditioning animals was shifted to the right, and maximal relaxation was attenuated compared with the nonischemic left circumflex coronary artery (117% +/- 4% vs 138% +/- 5%). In contrast, acetylcholine-induced maximal relaxation was comparable in the left anterior descending artery versus left circumflex coronary artery in the ischemic preconditioning group (130% +/- 6% vs 135% +/- 5%). In 150- to 200- microm left anterior descending microvessels, 50% relaxation occurred with a lower concentration (log[M]) of acetylcholine in ischemic preconditioning versus no-ischemic preconditioning (-8.0 +/- 0.4 vs -7.0 +/- 0.1) with no group differences in smooth muscle relaxation to sodium nitroprusside, suggesting endothelial-specific damage. Adherence of fluorescent labeled polymorphonuclear neutrophils to epicardial coronary artery endothelium, used as an index of basal (unstimulated) anti-polymorphonuclear neutrophil function, was significantly attenuated by ischemic preconditioning versus no-ischemic preconditioning (293 +/- 25 polymorphonuclear neutrophils/mm2 vs 528 +/- 29 polymorphonuclear neutrophils/mm2). CONCLUSION: In this minimally invasive direct coronary artery bypass grafting model, both agonist-stimulated and basal postischemic endothelial dysfunction were attenuated by ischemic preconditioning.  相似文献   

10.
OBJECTIVE: Endothelial dysfunction is claimed to play a role in the pathogenesis of delayed cerebral vasospasm after subarachnoid hemorrhage (SAH). We have examined the effect of experimental SAH on the modulatory action of endothelial and nonendothelial nitric oxide (NO) in the contractile response of goat middle cerebral artery to 5-hydroxytryptamine (5-HT). METHODS: We compared the 5-HT-induced contractile responses of cerebral arteries from control goats and from goats with SAH that had been experimentally induced 3 days earlier by delivery of autologous arterial blood into the subarachnoid space. Contractile responses were examined by recording the isometric tension in isolated cerebral arteries. To assess the influence of endothelium, this cell layer was mechanically removed in some of the arteria, segments (rubbed arteries) from both control goats and goats with SAH. RESULTS: In arteries from control goats, contractile responses to 5-HT were significantly higher in rubbed arteries than in arteries with intact endothelium; 5-HT-induced contractions were significantly enhanced by a competitive inhibitor of NO synthesis, NG-nitro-l-arginine, in arteries both with and without endothelium. In arteries from goats with SAH, 5-HT contracted cerebral arteries without showing significant differences between segments with endothelium and those that had been rubbed; in both cases, 5-HT-induced contractions were significantly higher than those obtained in arteries from control goats. NG-Nitro-l-arginine significantly enhanced the contractile response to 5-HT of cerebral arteries from goats with SAH. CONCLUSION: These results suggest that cerebral arteries after SAH exhibit hyperreactivity to 5-HT via a mechanism that involves the absence of the modulatory role of endothelial NO, that SAH does not modify the modulatory role of nonendothelial NO, and that impairment of the modulatory action of endothelial NO on vascular responses to 5-HT could contribute to the pathogenesis of cerebral vasospasm after SAH.  相似文献   

11.
1. The mechanisms by which histamine and 5-HT differentially contract pulmonary arteries and veins are unclear. In lung explants from 26 guinea-pigs, we compared responses of pulmonary arteries and vein to histamine, 5-HT and KCI, and examined potential determinants for the differential responses. Lungs were filled with agarose, sectioned into approximately 1 mm thick slices, and vascular luminal areas measured by image analysis. 2. Histamine and 5-HT produced a concentration-dependent constriction in arteries and veins, greater in the latter. KCl constricted arteries and veins equally. 3. The histamine H1 antagonist chlorpheniramine (10(-4) M) abolished contractions to histamine; the H2 antagonist cimetidine enhanced maximal responses and sensitivity of arteries and veins to histamine, and diminished the differences between their maximal responses; the NO synthase inhibitor Nomega-nitro-L-arginine (L-NOARG) increased the maximal responses of arteries and veins, and the differences between their responses; indomethacin had no effect. 4. Contractions to 5-HT were abolished in arteries and markedly reduced in veins by the 5-HT2 antagonist ketanserin (10(-4) M); L-NOARG potentiated the maximal responses of arteries but not of veins; indomethacin increased the maximal responses of arteries but reduced them in veins. 5. By morphometry, arteries had a greater medial thickness and luminal diameter than veins. 6. The data suggest that in guinea-pigs, H2 receptors are responsible for the differential contractile responses of pulmonary arteries and veins to histamine, whereas endothelium-derived vasoactive substances are responsible for their differential contractile responses to 5-HT.  相似文献   

12.
Bradykinin-induced responses were studied in isolated porcine iliac arteries. Relaxation was endothelium dependent and seen at low concentrations (10(-10)-10(-8) M) of bradykinin. It was inhibited by the bradykinin B2-receptor antagonist icatibant (HOE-140) and by the nitric oxide synthase inhibitor Nomega-nitro-L-arginine. Bradykinin-induced relaxation was significantly potentiated by the kininase I carboxypeptidase inhibitor mergepta (10(-6) M). Bradykinin (>10(-7) M) elicited contraction of preparations with or without endothelium. The contraction was abolished by indomethacin but was not affected by the thromboxane A2/prostaglandin H2-receptor antagonist SQ 29,548. Icatibant and the bradykinin B1-receptor antagonist desArg9[Leu8]bradykinin significantly decreased bradykinin-induced contraction regardless of endothelial function. The contraction also was decreased by treatment with mergepta. The bradykinin B1-receptor agonist desArg9-bradykinin contracted endothelium-denuded arterial strips. This contraction was significantly decreased by desArg9[Leu8]bradykinin but not by icatibant. The desArg9-bradykinin-induced contraction also was inhibited by the protein-synthesis inhibitor cycloheximide. Neither bradykinin-induced relaxation nor contraction was affected by the ACE inhibitors enalaprilat or cilazaprilat. In conclusion, bradykinin-induced relaxation of isolated porcine iliac arteries was mediated by endothelial bradykinin B2 receptors and mainly nitric oxide. Bradykinin-induced contraction was endothelium independent, indomethacin sensitive, and probably mediated by bradykinin B1 (inducible) and B2 receptors located in the vascular smooth-muscle layer. Kininase I carboxypeptidase, and not ACE, is the main enzyme responsible for bradykinin degradation in these vessels.  相似文献   

13.
Healthy coronary vascular endothelium releases nitric oxide to modulate resting and dynamic coronary arterial tone. We studied the impact of atherosclerosis and/or its risks on endothelial nitric oxide release in response to metabolic stimuli by evaluating coronary vasomotor responses to atrial pacing before and after the inhibition of nitric oxide production by intracoronary NG-monomethyl-L-arginine (L-NMMA) (20 micromol/min) infusion. The study includes 34 patients (15 with coronary disease, 11 with normal coronary arteries and > or =1 risk factor, and 8 with normal coronary arteries and no risks). Coronary blood flow was derived from Doppler flow velocity (0.018-inch Doppler wire) and coronary diameter. L-NMMA infusion reduced coronary blood flow by 18 +/- 16% and coronary diameter by 10 +/- 9%. Responses were identical in all subgroups. Coronary blood flow responses to pacing were similar in all subgroups and were unaffected by L-NMMA (11 +/- 11 vs 13 +/- 9 ml/min; p = 0.26). Epicardial coronary vasodilation to control pacing occurred in patients with normal coronary arteries with (4.0 +/- 5.2%, p = 0.01) or without (8.0 +/- 5.2%, p = 0.03) risks, but not in patients with coronary disease (2.8 +/- 5.9%). L-NMMA abolished pacing-induced epicardial vasodilation in patients without coronary artery disease, producing a 1.8 +/- 5.1% response, which was similar in all subgroups. We conclude that microvascular responses to rapid atrial pacing are not mediated by nitric oxide. Flow-mediated epicardial coronary arterial responses may be nitric oxide dependent.  相似文献   

14.
To examine the effects of inotropic stimulation on regional myocardial blood flow (MBF), oxidative metabolism, and contractile function in stunned myocardium, nine closed-chest dogs were studied 2 hours postreperfusion after a 25 minute occlusion of the left anterior descending coronary artery (LAD). MBF was determined with microspheres, and regional myocardial oxygen consumption (MVO2) was estimated from the rate constant k1 of the rapid clearance phase of [1-11C] acetate time activity curves, recorded with dynamic positron emission tomography. Myocardium at risk was determined from [13N] ammonia images obtained during occlusion. Wall motion, assessed by two-dimensional echocardiography, was impaired in postischemic myocardium in all dogs 2 hours after reperfusion. Dobutamine infusion increased the rate pressure product by 70% +/- 31% and significantly improved contractile function in the postischemic region in all dogs. In remote myocardium, MVO2 increased from 5.7 +/- 1.2 to 8.6 +/- 1.6 mumol/gm/min, and blood flow from 0.87 +/- 0.16 to 1.52 +/- 0.42 ml/gm/min in response to dobutamine. In reperfused myocardium, MVO2 increased from 3.1 +/- 0.7 to 7.4 +/- 1.5 mumol/gm/min, and blood flow from 0.51 +/- 0.12 to 1.2 +/- 0.4 ml/gm/min. Oxygen extraction increased significantly in reperfused myocardium relative to remote myocardium consistent with a flow-limited response to dobutamine stimulation. The improvement in contractile function failed to correlate significantly with relative increases in MBF or MVO2, suggesting that mechanical function is not as tightly coupled as MBF and MVO2 in postischemic myocardium during inotropic stimulation.  相似文献   

15.
Epoxyeicosatrienoic acids (EETs) are potent endothelium-derived vasodilators formed from cytochrome P-450 metabolism of arachidonic acid. EETs and their diol products (DHETs) are also avidly taken up by endothelial cells and incorporated into phospholipids that participate in signal transduction. To investigate the possible functional significance of EET and DHET incorporation into cell lipids, we examined the capacity of EETs and DHETs to relax porcine coronary arterial rings and determined responses to bradykinin (which potently activates endothelial phospholipases) before and after incubating the rings with these eicosanoids. 14,15-EET and 11,12-EET (5 mumol/L) produced 75 +/- 9% and 52 +/- 4% relaxation, respectively, of U46619-contracted rings, whereas 8,9-EET and 5,6-EET did not produce significant relaxation. The corresponding DHET regioisomers produced comparable relaxation responses. Preincubation with 14,15-EET, 11,12-EET, 14,15-DHET, and 11,12-DHET augmented the magnitude and duration of bradykinin-induced relaxation, whereas endothelium-independent relaxations to aprikalim and sodium nitroprusside were not potentiated. Pretreatment with 2 mumol/L triacsin C (an inhibitor of acyl coenzyme A synthases) inhibited [3H]14,15-EET incorporation into endothelial phospholipids and blocked 11,12-EET- and 14,15-DHET-induced potentiation of relaxation to bradykinin. Exposure of [3H]14,15-EET-labeled endothelial cells to the Ca2+ ionophore A23187 (2 mumol/L) resulted in a 4-fold increased release of EET and DHET into the medium. We conclude that incorporation of EETs and DHETs into cell lipids results in potentiation of bradykinin-induced relaxation in porcine coronary arteries, providing the first evidence that incorporated EETs and DHETs are capable of modulating vascular function.  相似文献   

16.
1. The effects of vitamin E deficiency were evaluated in aortic rings isolated from rats maintained on a diet deficient in vitamin E. 2. Endothelium-dependent vasodilator responses to acetylcholine (ACh) and calcium ionophore, A23187, were reduced in preparations from treated animals, compared to the age-matched controls. The maximal vasodilation to ACh was 66.4 +/- 9 (n = 4) and 38.8 +/- 7 (n = 4) % in control and 10 month-treated preparations, respectively. 3. The endothelium-independent vasodilator responses to sodium nitroprusside as well as the concentration-dependent contractile responses to noradrenaline, did not differ between treated and control preparations. 4. Electron microscopic examination of vascular segments and revealed that, following vitamin E deficiency, normal tissue organisation was disrupted, the endothelial monolayer either not being in contact with the underlying tissue or being absent in most of the areas analysed. 5. It is concluded that during vitamin E deficiency both morphological disruption and functional impairment of endothelium occur without observable modification of muscle cell function and morphology.  相似文献   

17.
Coronary artery endothelial dysfunction has been proposed as a cause of myocardial ischemia and symptoms in patients with angina-like chest pain despite normal coronary angiograms, especially those with ischemic-appearing ST-segment depression during exercise (syndrome X). We measured coronary vasomotor responses to acetylcholine (3 to 300 microg/min) in 42 patients (27 women and 15 men) with effort chest pain and normal coronary angiograms who also had normal electrocardiograms and echocardiograms at rest. All patients underwent treadmill exercise testing and measurement of systolic wall thickening responses to dobutamine (40 microg/kg/min) during transesophageal echocardiography. There were no differences in the acetylcholine-stimulated epicardial coronary diameter (+5+/-13% vs +1+/-13%, p=0.386) and flow (+179+/-90% vs +169+/-96%, p=0.756), or in the systolic wall thickening responses (+134+/-65% vs +118+/-57%, p=0.445) from baseline values in the 12 syndrome X patients compared with the 30 patients with negative exercise test results. In patients in the lowest quartile of coronary flow responses to acetylcholine, dobutamine increased systolic wall thickening by 121+/-73%; 3 had ischemic-appearing ST-segment depression during this stress. This contractile response to dobutamine was no different than the increase in systolic wall thickening (129+/-48%, p=0.777) in patients in the highest quartile of coronary flow responses, 3 of whom also had ischemic-appearing ST-segment depression during this stress. Thus, coronary endothelial dysfunction in the absence of coronary artery disease does not account for ischemic-appearing ST-segment depression in patients with chest pain despite normal coronary angiograms. Further, coronary endothelial dysfunction is not associated with myocardial contractile responses to stress consistent with myocardial ischemia.  相似文献   

18.
The present study was designed to investigate the influence of the endothelium and that of the L-arginine pathway on the contractile responses of isolated human cerebral arteries to electrical field stimulation (EFS) and norepinephrine. Rings of human middle cerebral artery were obtained during autopsy of 19 patients who had died 3-8 h before. EFS (1-8 Hz) induced frequency-dependent contractions that were abolished by tetrodotoxin, prazosin, and guanethidine (all at 10(-6) M). The increases in tension were of greater magnitude in arteries denuded of endothelium. N(G)-monomethyl L-arginine (L-NMMA 10(-4) M) potentiated the contractile response to EFS in artery rings with endothelium but did not influence responses of endothelium-denuded arteries. L-arginine (10(-4) M) reversed the potentiating effects of L-NMMA on EFS-induced contractions. Norepinephrine induced concentration-dependent contractions, which were similar in arteries with and without endothelium or in arteries treated with L-NMMA. Indomethacin (3 x 10(-6) M) had no significant effect on the contractile response to EFS or on the inhibition by L-NMMA of acetylcholine-induced relaxation. These results suggest that the contractile response of human cerebral arteries to EFS is modulated by nitric oxide mainly derived from endothelial cells; although adrenergic nerves appear to be responsible for the contraction, the transmitter involved in the release of nitric oxide does not appear to be norepinephrine. The effects of L-NMMA in this preparation appear to be due to inhibition of nitric oxide formation rather than caused by cyclooxygenase activation.  相似文献   

19.
1. The effect of basal tension (transmural tensions 235 +/- 29 mg wt (low tension: equivalent to approximately 16 mmHg) and 305 +/- 34 mg wt (high tension: equivalent to 35 mmHg)) on rat pulmonary resistance artery responses to endothelin-1 (ET-1) and the selective ET(B)-receptor agonist sarafotoxin S6c (S6c) were studied. The effects of nitric oxide synthase inhibition with N(omega)-nitro-L-arginine methylester (L-NAME, 100 microM) on ET receptor-induced responses, as well as vasodilator responses to acetylcholine (ACh) and S6c, were also investigated. Changes with development of pulmonary hypertension, induced by two weeks of chronic hypoxia, were determined. 2. Control rat preparations showed greatest sensitivity for ET-1 when put under low tension (pEC50: 8.1 +/- 0.1) compared with at the higher tension (pEC50: 7.7 +/- 0.1) and there were significant increases in maximum contractile responses to S6c (approximately 80%) and noradrenaline (approximately 60%) when put under high tension. 3. In control pulmonary resistance arteries, both ET-1 and S6c produced potent vasoconstrictor responses. S6c was 12 fold more potent than ET-1 in vessels set at low tension (S6c pEC50: 9.2 +/- 0.1) and 200 fold more potent than ET-1 when the vessels were set at high tension (S6c pEC50: 9.0 +/- 0.1). Chronic hypoxia did not change the potencies of ET-1 and S6c but did significantly increase the maximum contractile response to ET-1 by 60% (at low tension) and 130% (at high tension). 4. In control rat vessels, L-NAME itself caused small increases in vascular tone (5-8 mg wt tension) in 33-56% of vessels. In the chronic hypoxic rats, in vessels set at high tension, L-NAME-induced tone was evident in 88% of vessels and had increased to 26.9 +/- 6.6 mg wt tension. Vasodilatation to sodium nitroprusside, in non-preconstricted vessels, was small in control rat vessels (2-6 mg wt tension) but increased significantly to 22.5 +/- 8.0 mg wt tension in chronic hypoxic vessels set at the higher tensions. Together, these results indicate an increase in endogenous tone in the vessels from the chronic hypoxic rats which is normally attenuated by nitric oxide production. 5. L-NAME increased the sensitivity to S6c 10 fold (low tension) and 6 fold (high tension) only in chronic hypoxic rat pulmonary resistance arteries. It had no effect on responses to ET-1 in any vessel studied. 6. Vasodilatation of pre-contracted vessels by ACh was markedly greater in the pulmonary resistance arteries from the chronic hypoxic rats (pIC50: 7.12 +/- 0.19, maximum: 72.1 +/- 0.2.0%) compared to their age-matched controls (pIC50: 5.77 +/- 0.15, maximum: 28.2 +/- 2.0%). There was also a 2.5 fold increase in maximum vasodilatation induced by ACh. 7. These results demonstrate that control rat preparations showed greatest sensitivity for ET-1 when set at the lower tension, equivalent to the pressure expected in vivo (approximately 16 mmHg). Pulmonary hypertension due to chronic hypoxia potentiated the maximum response to ET-1. Pulmonary resistance arteries from control animals exhibited little endogenous tone, but exposure to chronic hypoxia increased endogenous inherent tone which is normally attenuated by nitric oxide. Endogenous nitric oxide production may increase in pulmonary resistance arteries from chronic hypoxic rats and attenuate contractile responses to ET(B2) receptor stimulation. Relaxation to ACh was increased in pulmonary resistance arteries from chronic hypoxic rats.  相似文献   

20.
The present study was designed to investigate the influence of endothelium-derived nitric oxide on the contractile responses of isolated human omental arteries to electrical field stimulation and noradrenaline. We measured isometric tension in artery rings obtained from portions of human omentum during the course of abdominal operations (32 patients). Electrical field stimulation induced frequency-dependent contractions which were abolished by tetrodotoxin (10(-6) M) and prazosin (10(-6) M), thus indicating that this effect was due to noradrenaline released from adrenergic nerves acting on alpha 1-adrenoceptors. The increases in tension induced by electrical field stimulation were of greater magnitude in arteries denuded of endothelium. NG-Nitro-L-arginine (L-NAME, 10(-4) M) potentiated the contractile response to electrical field stimulation in artery rings with endothelium but did not influence the contractile responses of endothelium-denuded arteries. The potentiation induced by L-NAME was completely reversed by L-arginine (10(-4) M), but not by D-arginine (10(-4) M). Contractile responses to noradrenaline were similar in arteries with and without endothelium. L-NAME (10(-4) M) had no significant effect on the contractile responses to noradrenaline. Our results suggest that electrical field stimulation releases endothelium-derived nitric oxide which inhibits the contractile responses of human omental arteries. The constrictor responses to noradrenaline are not modulated by the endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号