首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 363 毫秒
1.
Of the AlPO4-based molecular sieves, A1PO4, SAPOs, and MeAPOs of different pore sizes were prepared at 100-200°C by a hydrothermal crystallization method. This study was purposed to maximize the yield of light olefins through methanol conversion. Crystal structure was confirmed by means of XRD and SEM, and acidity was examined by TPD and IR of adsorbed ammonia on the catalysts. It was found that SAPO-34 exhibited more than 90% selectivity for light olefins such as ethylene, propylene, and butylene due to shape selectivity through small pores, although it had a strong acidity. MeAPO-34 exhibited slightly lower selectivity for light olefins than SAPO-34 and different product distribution, depending on the electronegativity of the metal in its framework. SAPO17 and SAPO-44, which have the same pore size with SAPO-34 but different pore structure from SAPO-34, showed less selectivity for light olefins than SAPO-34.  相似文献   

2.
SAPO-11 molecular sieves were synthesized from nonaqueous media. The effects of Si and Al sources as well as solvents on the catalytic performance of SAPO-11 were investigated by the hydroisomerization reaction of n-dodecane. The samples were characterized by XRD, XRF, N2-adsorption, SEM, NH3-TPD, IR-NH3 and 29Si CP MAS NMR. The SAPO-11 samples synthesized with tetraethoxysilane as the Si source showed higher Si incorporation contents than the SAPO molecular sieves prepared with polymeric Si sources (fumed silica and Si colloidal gel). The reaction results showed that Pt/SAPO-11 catalysts synthesized from ethylene glycol and glycerol media with the monomeric Si and Al sources (tetraethoxysilane, aluminum isopropoxide) exhibited higher catalytic activities than those catalysts with the polymeric Si or Al (pseudo-boehmite) sources, due to the larger external surface area and higher acidity of the former ones. Especially, the catalyst synthesized in an ethylene glycol medium possessed the highest catalytic activity. Over this catalyst, 88% conversion of n-dodecane was achieved at a low temperature of 250 °C.  相似文献   

3.
Silicoaluminophosphate (SAPO-5) molecular sieves have been synthesised from reaction mixtures having a molar composition of: 0.7–1.0 Al2O3:0.7–1.0 P2O5:0.01–2.0 SiO2:xR:40 H2O (where R = (C2H3)3N or (C2H3)4NOH and x = 1.5–2.5 for (C2H5)5N and 0.5 for (C2H5)4NOH, at 473 K using various sources of alumina and silica. The effects of (i) varying the crystallinity of the alumina source (boehmite) and (ii) the use of different silica sources such as freshly prepared silica either from sodium silicate or paddy husk extract, silica gel from commercial water-glass, and tetraethyl orthosilicate have been studied. The crystallinity of boehmite has been found to have a strong effect on its reactivity towards the formation of SAPO-5. The activity of boehmite for SAPO-5 formation increased with a decrease in its crystallinity (or with increase in its moisture content). Any silica source devoid of sodium ions could be employed for the synthesis of SAPO-5. The process of crystallisation started as early as within 1.5 h of reaction and incorporation of silicon into the AlPO4 framework has been noted at this stage. Formation of some tridymite phase as impurity has been observed under conditions such as (i) SiO2 concentration > 1.7 mole and (ii) x > 2.0 when R = (C2H5)3N.  相似文献   

4.
SAPO-34 molecular sieves with different Si coordination environment were synthesized by adjusting SiO2/Al2O3 molar ratio in starting gel. The crystal structure, element composition and Si coordination environment of the as-synthesized samples were characterized by XRD, SEM, XRF and NMR. SAPO-34 molecular sieve could be obtained when the SiO2/Al2O3 molar ratio of the starting gel was higher than 0.075. The content and modeling of Si incorporated into SAPO-34 framework varied with the SiO2/Al2O3 molar ratios in the starting gel and different Si chemical environments were formed correspondingly. SAPO-34 with only Si(4Al) coordination structure could be prepared when the SiO2/Al2O3 molar ratio of the starting gel was in range of 0.075–0.15.  相似文献   

5.
采用水热合成法制备了SAPO分子筛,考察磷与铝物质的量比对SAPO分子筛催化转化氯甲烷制氯乙烯单体反应催化性能的影响.结果表明,SAPO-34在氯甲烷催化转化制备氯乙烯单体反应中,表现出较好的催化性能及稳定性.  相似文献   

6.
在季戊四醇和四乙基氯化铵低共融混合物中,采用离子热法将苏州高岭土为主要原料的微球原位晶化制备了SAPO-34分子筛微球。考察了晶化条件和晶化液对原位合成的影响。通过XRD和SEM等手段对合成的微球进行了表征。实验结果表明,在晶化温度为180 ℃下,晶化液物质的量比为n(二氧化硅)∶n(氧化铝)∶n(五氧化二磷)∶n[N-甲基咪唑(2-甲基咪唑)]∶n(氟化氢)∶n(水)=2.26∶1∶0.5∶0.66∶0.3∶26.4时,晶化20 h可以合成出SAPO-34分子筛微球。加入导向剂N-甲基咪唑和2-甲基咪唑有利于SAPO-34分子筛的合成。  相似文献   

7.
刘志玲  张伟  张媛  张菊 《工业催化》2016,24(6):14-18
SAPO-34分子筛具有独特的骨架结构,应用于甲醇制低碳烯烃反应时速率较快且不易堵塞。小晶粒SAPO-34分子筛可有效缓解产物聚合结焦,提高催化剂寿命,但通过简单的合成方法得到粒径小于100 nm的SAPO-34纳米颗粒非常困难。综述影响SAPO-34分子筛粒径的因素,通过选择合适的材料,老化和结晶条件,达到有效控制SAPO-34分子筛粒径的目的。以拟薄水铝石为铝源,液态硅为硅源,采用在水热体系中溶解度较高的四乙基氢氧化铵为模板剂,通过适当延长陈化时间和缩短晶化时间,较容易得到粒径较小的SAPO-34分子筛。  相似文献   

8.
A series of SAPO-5 molecular sieves have been synthesized by varying the silicon source, template and crystallization time. X-ray diffraction (XRD), SEM-EDAX, IR and TPD of ammonia have been employed to characterize their structure and acidity. The results show that the type and the amount of the template has a great effect on the yield of SAPO-5. The silicon source also exerts influence on the morphology of SAPO-5 and its acidity. Prolonging the aging time not only increases the silicon content in SAPO-5, but also decomposes the large crystal into small one and alters the acidity. However, when the aging time is over 48 h, the crystallinity of the molecular sieve decreases and some SAPO-34 intergrows in the product. Brønsted acid sites with medium strength are predominant on the SAPO-5 samples prepared, with which the n-hexane cracking activity at 450°C runs parallel.  相似文献   

9.
《分离科学与技术》2012,47(7):1138-1143
Fine crystals of SAPO-34 were synthesized by preparation of sol-gel precursor and hydrothermal process. The produced crystalline phase and the crystal shapes were analyzed by XRD patterns and SEM images. The core-shell adsorbent was prepared by the formation of the fine layer of SAPO-34 on the surface of the inert ceramic particles using the same synthesis parameters and hydrothermal conditions by in situ crystallization. The prepared core-shell SAPO particles were tested in dynamic adsorption experiments of a mixture of 5% CO2 and 95% CH4 at 298 K and 0.1 MPa, and their performance was compared with pure powders of SAPO-34 in the same adsorption operational conditions. The longer breakthrough time, sharper breakthrough curves, and higher CO2 adsorbed amount were observed using core-shell SAPO-34 particles as adsorbent rather than using pure particles of SAPO-34. It is concluded that the production of a thin layer of SAPO-34 on cheap and inert porous ceramic particles is preferred rather than using higher amounts of SAPO-34 powders pelleted or binded with inert material in dynamic adsorption processes for the separation of CO2 from natural gas.  相似文献   

10.
采用水热合成法制备了小晶粒SAPO-34分子筛,主要考察了不同硅源(硅溶胶,二氧化硅纳米粉和正硅酸乙酯)和磷源(磷酸,多聚磷酸)对合成SAPO-34分子筛的影响.实验结果表明:在合成液配比为1.0 Al2O3∶2.0 P2O5∶0.6 SiO2∶4.0 TEAOH∶105.0 H2O以及晶化温度为180 ℃晶化时间为48 h的条件下,二氧化硅纳米粉是较为理想的硅源,所合成的SAPO-34分子筛具有较高的结晶度,晶体呈现典型的立方体结构,晶粒大小为300 nm左右;而将多聚磷酸取代磷酸作为磷源后可以有效缩短合成时间至36 h,同时晶型由立方体结构转变为片状结构,但晶粒增大至为500 nm左右.  相似文献   

11.
Three kinds of 8-membered ring silicoaluminophosphate (SAPO) molecular sieves with different cage structures, SAPO-34, SAPO-18 and SAPO-35, were employed in methanol-to-olefin (MTO) reaction. The main products over SAPO-34 and SAPO-18 were propene and butenes, whereas ethene and propene especially ethene were predominantly generated over SAPO-35. Coke species formation greatly depended on reaction temperature and varied systematically with cage size. The differences in production distribution and generated coke species in the MTO reaction suggest great spatial confinement effects imposed by cage structure of SAPO catalysts.  相似文献   

12.
Pt catalysts supported on silicoaluminophosphate molecular sieves were synthesized by adding platinum salts directly to the gel mixture of SAPO. The synthesized products were marked as PtSAPO-5, in order to distinguish with the SAPO-5 supported platinum catalyst prepared by impregnation, which was marked as Pt/SAPO-5. The as-synthesized and calcined PtSAPO-5 samples were characterized by XRD,29Si MAS NMR,129XeNMR and NH3-TPD, and their catalytic activities were evaluated by the hydroisomerization of n-hexane. The results revealed that in PtSAPO-5, the platinum could catalyze the removal of the templates entrapped in the as-synthesized samples. The presence of Pt in the gel mixture can increase silicon content in the framework of SAPO-5, and the acid sites. In the activated PtSAPO-5 catalyst, Pt was highly dispersed in the channel of SAPO-5 molecular sieve. Pt exists in the form of big particles outside of the channel of Pt/SAPO-5 prepared by impregnating method, and impregnation with H2PtCl6 improved the strength of acid sites. PtSAPO-5 has a higher activity and selectivity than Pt/SAPO-5 in the hydroisomerization of n-hexane. This is because the former has medium acid sites and high dispersion of Pt, while the channel of Pt/SAPO-5 is somewhat retarded by the big platinum particles, and the acid sites are stronger than the former.  相似文献   

13.
Cyclic adsorption processes of PSA, VSA, and TSA were modeled and numerically simulated using SAPO-34 core-shell adsorbent. The results were compared with ordinary SAPO-34 to achieve a more efficient process for CO2–CH4 separation. OCM coupled with method of lines was used for numerical solution of the mechanistic model. The simulation results revealed higher efficiency of core-shell adsorbent with less usage of SAPO rather than the ordinary adsorbent to achieve the same degree of purification and recovery. VSA and TSA processes against PSA resulted in CH4 purification capability more than 99% with more than 73% recovery. However, VSA process has revealed higher productivity rather than TSA.  相似文献   

14.
SAPO-34 is an excellent catalyst for the conversion of dimethyl ether (DME) to olefins, but because conventionally synthesized SAPO-34 crystals are too small to be used directly in a fluidized bed, they have to be used as, and have the disadvantages of, a spray-dried catalyst. In this study, SAPO-34 crystals were synthesized in situ to grow on the surface of small α-Al2O3 spheres to produce a zeolite catalyst for a fluidized bed reactor. The influences of the composition of the crystal gel and surface structure of the support were investigated. The catalytic performance of the zeolite crystals grown on the support (surface zeolite) for the conversion of DME to olefins was investigated in a fixed bed microreactor and a fluidized bed reactor. The experiments showed that these surface SAPO-34 crystals gave the same activity and product selectivity as conventionally synthesized free SAPO-34 crystals and a higher reaction rate (normalized to the weight of SAPO-34) than the spray-dried catalyst. In situ synthesis is a simple and effective way to produce a SAPO-34 catalyst for a fluidized bed reactor.  相似文献   

15.
The Pt–Sn-based catalyst was intensified using SAPO-34 as support for direct propane dehydrogenation to propylene. The catalyst was prepared by sequential impregnation method and characterized by XRF, BET, XRD, NH3-IR, NH3-TPD, H2-TPR, HR-TEM and O2-pulse coke analysis. NH3-TPD, IR spectra and XRD results suggested that the doping of metals on SAPO-34 did not affect its acidic strength and structural topology of support, respectively. Propylene selectivity of 94% and total olefins selectivity greater than 97% was achieved using Pt–Sn/SAPO-34. The results were compared with Pt–Sn/ZSM-5 under identical conditions. The possible reasons for improvement were the larger surface area, shape selectivity and particular by suitable acidity of SAPO-34.  相似文献   

16.
The effects of the synthetic condition of SAPO-11 molecular sieves on ethanol dehydration to ethylene were studied. Product-compositions, ethanol conversion, and selectivity to ethylene of synthesized and commercial SAPO-11 molecular sieves were compared. Results are as follows: the optimal synthetic conditions for SAPO-11 molecular sieves are adding pseudoboehmite before orthophoshporic, using di-n- propylamine as the template, having a mass fraction of 40% colloidal silica as the silica source and the starting gel obtained, and running at 200°C for 48 h. From the patterns of NH3-TPD, the amount of acid synthesized by SAPO-11 molecular sieves is less than that by commercial SAPO-11 molecular sieves, and has a stronger weak acid. Also, ethanol conversion and selectivity to ethylene reached 99% at 280°C on synthesized SAPO-11, lower by 20°C compared to commercial SAPO-11. For two SAPO-11 molecular sieves, the by-products in the gas phase are mainly ethane, propane, propene, isobutane, n-butane, propadiene, butylene and some higher hydrocarbons. The by-products in the liquid phase are ethyl ether and acetaldehyde.  相似文献   

17.
18.
SAPO-11 molecular sieves were synthesized using single agent (i.e. diethylamine (DEA), di-iso-propylamine (DIPA) and di-n-propylamine (DPA)) or a mixture of DEA and DIPA (named DEPA) as the template under hydrothermal conditions. XRD indicated that the directing effect of different templates for AEL structure decreased in the order of DEPA > DPA > DIPA > DEA. 29Si MAS NMR showed that although all SAPO-11 samples synthesized at same Si content, that prepared with the mixed template contained more Si (4Al) sites, whereas Si (nAl, 4-nSi, 0 < n < 4) environments were predominant in the samples synthesized with single template. The results indicated that the mixed template led to a better Si dispersion and then increased the number of total acid sites of SAPO-11. In the isomerization of n-tetradecane over different Pt/SAPO-11 catalysts, the sample prepared with DEPA showed high catalytic activity and selectivity for i-C14, which were related to the most abundant weak acid sites of the sample.  相似文献   

19.
周新涛  苏达根 《广州化工》2010,38(9):90-92,95
以具有一定活性的偏高岭土兼作铝源与硅源、正磷酸作磷源、三乙胺作模板剂,水热法合成了SAPO-5分子筛。考察了晶化时间、三乙胺用量、HF的添加、体系中水含量等因素对产物晶相组成及结构的影响。利用X射线衍射分析(XRD)、红外光谱分析(FTIR)、扫描电镜(SEM)、X光电能谱(XPS)等手段对产物结构与组成进行了表征分析,研究结果表明原料最佳配比为MK:P2O5:2.5TEA:0.1HF:45H2O,在200℃下,晶化24h可获得结晶度较高、晶体形貌规整的SAPO-5分子筛。  相似文献   

20.
代跃利  王磊  刘德阳 《化工进展》2015,34(3):731-737
介绍了用于催化甲醇制烯烃的SAPO-34分子筛合成的研究近况。SAPO-34分子筛的合成过程是影响其晶粒尺寸、酸性强弱等物化性能的重要因素, 因而是影响其催化性能的关键因素。本文详细叙述了原料配比及其种类、模板剂、F-等合成因素对SAPO-34分子筛物化性能及其MTO反应催化性能的影响。针对SAPO-34合成及其催化性能优化的新技术, 综述了SAPO-34分子筛的金属改性及其超声波、微波辅助合成的特点和效果, 指出通过研发新的模板剂及其助剂、改性或制备新工艺进而改善分子筛的酸性、提高其烯烃选择性、延长催化反应寿命、降低合成成本是SAPO-34今后研发的重要方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号