首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Diamond-like carbon (DLC) thin films were grown on Si-(100) substrates by a magnetically-assisted pulsed laser deposition (PLD) technique. The role of magnetic field on the structural, morphological, mechanical properties and deposition rate of DLC thin films has been studied. The obtained films were characterized by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), field emission scanning electron microscopy (FE-SEM) and nanoindentation techniques. It was found that the diamond-like character, thickness and deposition rate of the DLC films increase in the presence of magnetic field. The films deposited under magnetic field exhibit a denser microstructure and smoother surface with lower surface roughness. Meanwhile, the mechanical properties of the magnetically processed DLC thin films experience an improvement, relative to the conventionally processed ones. It seems that the DLC films deposited under magnetic field can be better candidate for hard and wear resistance coating applications.  相似文献   

2.
Growth regimes of C:Ni (30 at.%) composite thin films grown by ion beam co-sputtering in the temperature range of RT-500 °C are investigated. The combination of elastic recoil detection analysis, X-ray diffraction, transmission electron microscopy and Raman spectroscopy employing two excitation wavelengths was used to characterize the coexisting carbon and nickel constituents of the composite structure. Three growth regimes are identified characterized by different Ni nanoparticle shape (granular, columnar) and crystal structure (Ni3C or fcc Ni). The comparison of the Raman spectroscopy results from carbon reference and C:Ni (30 at.%) thin films shows that the presence of Ni enhances significantly the 6-fold ring clustering process at temperatures as low as RT, while at higher temperatures it favors ordering within the 6-fold ring clusters. The enhancement occurs independently on Ni nanoparticle size, shape or phase and is related to processes taking place on the surface of the growing film growth rather than in the bulk.  相似文献   

3.
Effect of annealing on SiC thin films prepared by pulsed laser deposition   总被引:3,自引:0,他引:3  
Crystalline cubic SiC thin films were successfully fabricated on Si(100) substrates by using laser deposition combined with a vacuum annealing process. The effect of annealing conditions on the structure of the thin films was investigated by X-ray diffraction and Fourier transform infrared spectroscopy. It was demonstrated that amorphous SiC films deposited at 800°C could be transformed into crystalline phase after being annealed in a vacuum and that the annealing temperature played an important role in this transformation, with an optimum annealing temperature of 980°C. Results of X-ray photoelectron spectroscopy revealed the approximate stoichiometry of the SiC films. The characteristic microstructure displayed in a scanning electron microscope image of the films was indicative of epitaxial growth along the (100) plane.  相似文献   

4.
V. Singh  R.C. Tittsworth 《Carbon》2006,44(7):1280-1286
Composite Cr-containing hydrogenated amorphous diamond-like carbon (Cr-DLC) films were synthesized by a hybrid PVD/CVD plasma-assisted deposition process. In a recent study, it was found that Cr-DLC films with <∼12 at.% Cr possess excellent tribological properties. However, the role of Cr in inducing these characteristics is not clear. In the present report, the local structure around the Cr atoms in the latter films was studied as a function of Cr content by X-ray absorption spectroscopy. The Cr K-edge X-ray absorption near edge structure spectra show that Cr in DLC has a chemical state similar to that of chromium carbide. Analysis of the extended X-ray absorption fine structure spectra shows that at low Cr content (<0.4 at.% Cr), Cr is dissolved in the amorphous DLC matrix forming an atomic-scale composite. Simulation studies suggest that in the latter films, Cr tends to be present as very small atomic clusters of 2-3 Cr atoms. At higher Cr contents (>1.5 at.%), Cr is present as nanoparticles (<10 nm) of a defected carbide structure forming a nanocomposite.  相似文献   

5.
Hydroxyapatite/wollastonite (HA/WS) composite films on titanium alloy were prepared by pulsed laser deposition, and their bioactivity was studied. The dissolution and precipitation behaviors of the films were evaluated by soaking in simulated body fluid (SBF), and the osseointegration ability was evaluated by in vivo test. In the early soaking stage, the dissolution action will dominate, thus resulting in the gradual disappearance of the smooth spherical feature of the particles. After 7 days of soaking, new precipitates were observed which indicates that reprecipitation reaction dominates, and the surface was almost completely covered by new precipitates after the film was soaked for 28 days. The in vivo test showed that the composite films have excellent osseointegration ability. When the sample was embedded in the shin bone of rabbit for 3 weeks, a good combination of bone tissue and implant was achieved, and after embedding for 6 weeks, osteoblasts were observed between the bone tissue and implant.  相似文献   

6.
《Ceramics International》2016,42(11):12783-12788
(AlGa)2O3 thin films were deposited on (0001) sapphire substrates by pulsed laser deposition at different substrate temperatures. The influence of substrate temperature on surface morphology, optical properties, and crystal quality has been systematically investigated by atomic force microscope, transmission spectra, X-ray diffraction, and Raman spectroscopy. The results reveal that all the (AlGa)2O3 films have smooth surface and high transmittance. The (AlGa)2O3 film with the good crystal quality can be obtained at a substrate temperature of 400 °C. Our results provide an experimental basis for realizing the Ga2O3-based quantum well.  相似文献   

7.
《Ceramics International》2016,42(6):6701-6706
Undoped and Al-doped ZnO (AZO) thin films (Al: 3, 5 at%) using a series of high quality ceramic targets have been deposited at 450 ºC onto glass substrates using PLD method. The used source was a KrF excimer laser (248 nm, 25 ns, 2 J/cm2). The study of the obtained thin films has been accomplished using X-ray diffraction (XRD), M-lines spectroscopy and Rutherford backscattering spectroscopy (RBS). XRD patterns have shown that the films crystallize in a hexagonal wurtzite type structure with a highly c-axis preferred (002) orientation, and the grain sizes decrease from 37 to 25 nm with increasing Al doping. The optical waveguiding properties of the films were characterized by means of the prism-coupling method. The distinct M-lines of the guided transverse magnetic (TM) and transverse electric (TE) modes of the ZnO films waveguide have been observed. The M-lines device has allowed determination of the accurate values of refractive index and thickness of the studied ZnO and AZO thin films. An evaluation of experimental uncertainty and calculation of the precision of the refractive index and thickness were developed on ZnO films. The RBS results agree with XRD and m-lines spectroscopy measurements.  相似文献   

8.
Yan-Qiu Chu 《Electrochimica acta》2004,49(27):4915-4921
Spinel cobalt ferrite (CoFe2O4) thin films have been fabricated by 355 nm reactive pulsed laser deposition on stainless steel substrates. XRD and SEM analyses showed that the CoFe2O4 films exhibited a polycrystalline structure and were composed of nanoparticles with an average size of 80 nm. At 1C rate, the initial irreversible capacity of polycrystalline CoFe2O4 film electrode cycled between 0.01 and 3.0 V reached 1280 mAh/g. After 20 cycles, the reversible discharge capacities decreased and sustained about 610 mAh/g. The diffusion coefficient of Li ion for CoFe2O4 films was determined by ac impedance method, and the average value was estimated to be 1.1 × 10−13 cm2/S. Based on ex situ XRD, SEM and XPS data, the electrochemical mechanism of CoFe2O4 film with lithium upon cycling was proposed. During the first discharge, the amorphization process of CoFe2O4 film electrode is accompanied with the reduction of Co2+ and Fe3+ into metal Co and Fe, respectively, and then the reversible oxidation/reduction processes of Co, Fe and Li2O take place in the subsequent charge/discharge cycles.  相似文献   

9.
10.
The properties of tetrahedral amorphous carbon (ta-C) films grown by pulsed laser deposition (PLD) using camphoric carbon (CC) target and their respective effects of diamond percentages by weight in the target (Dwt.%) are discussed. Scanning electron microscopy (SEM), atomic force microscopy (AFM), Visible-Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS) analyses indicated that the Dwt.% noticeably modified the sp3 bonds content and the morphology of the ta-C films. The optical gap (Eg) and electrical resistivity (ρ) increase with Dwt.% up to 1.6 eV and 5.63×107 (Ω cm), respectively, for the ta-C films deposited using target with higher of 50 Dwt.%. We found that the Dwt.% has modified the surface morphological, structural, bonding and physical properties of the camphoric carbon films.  相似文献   

11.
In this work, CuIn1 - x Ga x Se2 (CIGS) thin films were prepared by nanosecond (ns)- and femtosecond (fs)-pulsed laser deposition (PLD) processes. Different film growth mechanisms were discussed in perspective of the laser-produced plasmas and crystal structures. The fs-PLD has successfully improved the inherent flaws, Cu2 - x Se, and air voids ubiquitously observed in ns-PLD-derived CIGS thin films. Moreover, the prominent antireflection and excellent crystalline structures were obtained in the fs-PLD-derived CIGS thin films. The absorption spectra suggest the divergence in energy levels of radiative defects brought by the inhomogeneous distribution of elements in the fs-PLD CIGS, which has also been supported by comparing photoluminescence (PL) spectra of ns- and fs-PLD CIGS thin films at 15 K. Finally, the superior carrier transport properties in fs-PLD CIGS were confirmed by fs pump-probe spectroscopy and four-probe measurements. The present results indicate a promising way for preparing high-quality CIGS thin films via fs-PLD.  相似文献   

12.
Aluminum oxide (Al2O3) thin films were deposited on silicon (100) and quartz substrates by pulsed laser deposition (PLD) at an optimized oxygen partial pressure of 3.0×10?3 mbar in the substrate temperatures range 300–973 K. The films were characterized by X-ray diffraction, transmission electron microscopy, atomic force microscopy, spectroscopic ellipsometry, UV–visible spectroscopy and nanoindentation. The X-ray diffraction studies showed that the films deposited at low substrate temperatures (300–673 K) were amorphous Al2O3, whereas those deposited at higher temperatures (≥773 K) were polycrystalline cubic γ-Al2O3. The transmission electron microscopy studies of the film prepared at 673 K, showed diffuse ring pattern indicating the amorphous nature of Al2O3. The surface morphology of the films was examined by atomic force microscopy showing dense and uniform nanostructures with increased surface roughness from 0.3 to 2.3 nm with increasing substrate temperature. The optical studies were carried out by ellipsometry in the energy range 1.5–5.5 eV and revealed that the refractive index increased from 1.69 to 1.75 (λ=632.8 nm) with increasing substrate temperature. The UV–visible spectroscopy analysis indicated higher transmittance (>80%) for all the films. Nanoindentation studies revealed the hardness values of 20.8 and 24.7 GPa for the films prepared at 300 K and 973 K respectively.  相似文献   

13.
《Ceramics International》2016,42(11):13262-13267
Barium zirconate titanate (BaZr0.2Ti0.8O3, BZT) 250 nm thick thin films were fabricated by pulsed laser deposition and the influence of the substrate temperature on their preferred orientation, microstructure, morphology and dielectric properties was investigated. Dielectric measurements indicated the (1 1 0)-oriented BZT thin films deposited at 750 °C to show good dielectric properties with high dielectric constant (~500 at 100 kHz), low loss tangent (<0.01 at 100 kHz), and superior tunability (>70% at 400 kV/cm), while the largest figure of merit was 78.8. The possible microstructural background responsible for the high dielectric constant and tenability is discussed. In addition, thin films deposited at 750 °C with device quality factor of 8738 and dielectric nonlinearity coefficient of 1.66×10−10 J/C4m5 were demonstrated.  相似文献   

14.
Nitrogen-doped ultrananocrystalline diamond (UNCD)/hydrogenated amorphous carbon (a-C:H) composite films, which possess n-type conduction with enhanced electrical conductivities, were prepared by pulsed laser deposition and they were structurally studied by Fourier transform infrared (FTIR) spectroscopy. The film with a nitrogen content of 7.9 at.% possessed n-type condition with an electrical conductivity of 18 S/cm at 300 K. The FTIR spectra revealed peaks due to nitrogen impurities, C = N, C-N, and CHn (n = 1, 2, 3) bands. The sp2-CHn/(sp2-CHn + sp3-CHn), estimated from the area-integration of decomposed peaks, were 24.5 and 19.4% for undoped and 7.9 at.% doped films, respectively. The nitrogen-doping not only form the chemical bonds between carbon and nitrogen atoms such as C = N and C-N bonds but also facilitate the formation of both sp2 and sp3 bonds, in particular, the sp3-CHn bond is preferentially formed. From the analysis of the FTIR spectra, it was found that the hydrogen content in the film is increased with an increase in the nitrogen content. The increased hydrogen content might be owing to the enhanced volume of grain boundaries (GBs) between UNCD grains, and those between UNCD grains and an a-C:H matrix, which is caused by a reduction in the UNCD grain size. The CHn peaks predominantly come from an a-C:H matrix and GBs. Since the nitrogen-doping for a-C:H has been known to be hardly effective, the n-type conduction with the enhanced electrical conductivities might be attributed to the sp2-CHn formation at the GBs.  相似文献   

15.
LiFePO4 thin films have been prepared by pulsed laser deposition method on titanium substrates. The influence of the deposition parameters, e.g. substrate temperature, ambient argon pressure, and post-annealing on the crystallinity and morphology of as-deposited thin films are investigated. Well-crystallized pure olivine-phase is obtained under optimized deposition condition (20–30 Pa, 500 °C). It shows a high electrochemical activity (83% theoretical capacity) at low current density (0.33 μA cm−2, 1/20 C) and elevated testing temperature (45 °C). Moderate post-annealing treatment can enhance the utilization of the films further. The deposition of the film at a too high temperature or post-annealing for too long time could introduce Fe3+ impurities, i.e., Li3Fe2(PO4)3 and Fe4(P2O7)3, which can be easily detected by extending the electrochemical test voltage down to 2.5 V.  相似文献   

16.
High-quality crystalline ZnSe thin film has been successfully fabricated by using pulsed laser ablation of mixed target of Zn and Se. The physical, electrochemical and spectroelectrochemical properties of the as-deposited thin film at different substrate temperatures have been investigated by scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), the charge/discharge, cyclic voltammetry (CV) and in situ absorbance spectra measurements. The thin film deposited at room temperature consisted of a mixture of Zn and Se. When the substrate temperature was elevated to 300 °C, the as-deposited thin film was composed of crystallized ZnSe. The cycle performance of ZnSe/Li cell is well than that of Zn-Se/Li cell. A couple of reduction and oxidation peaks at 0.51 and 1.4 V from CV curves of ZnSe/Li cell was found, indicating the reversible formation and decomposition of Li2Se. Both classical alloying/dealloying processes and the partially selenidation/reduction of nano-sized metal zinc were proposed in lithium electrochemical reaction of ZnSe. The high degree of crystallinity in the zinc alloys and the slow kinetics should be responsible for a large irreversible capacity loss and poor cyclability.  相似文献   

17.
Optimisation of femtosecond pulsed laser deposition parameters for the fabrication of silicon thin films is discussed. Substrate temperature, gas pressure and gas type are used to better understand the deposition process and optimise it for the fabrication of high-quality thin films designed for optical and optoelectronic applications.  相似文献   

18.
《Ceramics International》2022,48(6):7876-7884
In this paper we show resistive switching characteristics of ZnFe2O4 thin films grown by pulsed laser deposition at various oxygen partial pressures. We discuss how the microstructure, surface roughness, oxidation condition, and resistive switching properties of ZnFe2O4 thin films are influenced by the oxygen partial pressure prevalent in the chamber during the deposition process. The films were deposited at oxygen partial pressure (pO2) of 0.0013, 0.013, 0.13 and 1.3 mbar. The ZnFe2O4 thin film deposited at the lowest pO2 (0.0013 mbar) did not display a resistive switching characteristic. The ZnFe2O4 device deposited at 0.13 mbar yielded the best results. These devices have a low SET variance and a large memory window (more than 2 orders of magnitude) due to an optimum amount of oxygen vacancies/ions contained in the ZnFe2O4 film, which is helpful for better resistive switching, than devices deposited at other oxygen pressures. We also find that the migration of oxygen vacancies is linked to the resistive switching process.  相似文献   

19.
Ni doped Cr2O3 (NCO) films have attracted much attention due to their applications in the field of photovoltaics. This study reports the tailoring of structural, electrical and optical properties as a function of Ni doping in Chromium oxide (Cr2O3). NCO thin films were grown by Pulsed laser deposition (PLD) using 2nd harmonic Nd:YAG Laser on n-Si (100) with in-situ annealing of 450?°C. Structural analyses based on X-ray diffractometry (XRD) and Raman Spectroscopy showed the inconsistent variation in crystallinity and shift in A1g band in turn revealing the successful incorporation of Ni into Chromium oxide host lattice. In addition, electrical measurements also showed an inconsistent variation in resistivity ranging from 102 to 104Ω?cm. The properties showed widening of band gap energy (Eg) from 3.41 to 3.60?eV as a function of Ni doping concentration with significantly decreased reflectance in the range of 500–600?nm thereby increasing the absorption, a pre-requisite for solar absorbers.  相似文献   

20.
《Ceramics International》2017,43(18):16232-16237
In this paper, p-type Cu2O thin films have been epitaxially grown on n-type semiconducting (001) oriented Nb-SrTiO3 (NSTO) substrates with different Nb doping concentration by pulsed laser deposition technique. X-ray diffraction and high resolution transmission electron microscopy reveal a cube-on-cube epitaxial relationship between Cu2O and NSTO. It is found that the deposition temperature, the thickness of Cu2O films and the Nb doping concentration of NSTO substrates have critical impact on the photovoltaic (PV) properties of the Cu2O/NSTO heterojunction devices. A maximum PV performance is observed in ITO/Cu2O/NSTO device when the deposition temperature, film thickness and Nb doping concentration of NSTO are 550 °C, 76 nm, and 0.7 wt% NSTO, respectively. The optimized PV output corresponds to the open circuit voltage, short-circuit current density, fill factor and photovoltaic conversion efficiency about 0.45 V, 1.1 mA/cm2, 46% and 0.23%,respectively. This work offers an insight into the strategy for developing and designing novel optoelectronics of NSTO-based oxide heterostructures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号