共查询到20条相似文献,搜索用时 15 毫秒
1.
The electrochemical corrosion behaviours of the steel substrates coated with three different plasma sprayed Al2O3–13%TiO2 coatings were studied in this paper. The three kinds of Al2O3–13%TiO2 coatings were conventional ME coating, nanostructured NP coating and NS coating. There were micro cracks, laminar splats and straight columnar grains in ME coating. For the two nanostructured coatings, the laminar microstructure and columnar grains were not obvious. The NP coating had the highest hardness and spallation resistance. Electrochemical corrosion behaviour of the three coatings was mainly investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) in aqueous Na2SO4 solution. 相似文献
2.
Characterization and corrosion studies of ceria thin film based on fluorinated AZ91D magnesium alloy
The CeO2 thin film was prepared via sol-gel method on fluorinated AZ91D magnesium alloy surfaces. The surface morphology, composition and the corrosion resistance of the film were investigated in details using scanning electron microscope, X-ray photoelectron spectroscopy and electrochemical impedance spectroscopy as well as potentiodynamic polarization tests. It was found that small amount of MgO and MgF2 were encapsulated in CeO2 thin film. The electrochemical measurement results demonstrated that the CeO2 thin film on fluorinated AZ91D magnesium alloy could improve the corrosion resistance approximately by two orders of magnitude compared with that of the bare substrate. 相似文献
3.
By a two-step fabrication process of electrolytic deposition and annealing treatment, an MgO/ZrO2 duplex-layer coating has been prepared on AZ91D magnesium alloy as a protective film against corrosion. Owing to the chemical bonding formed after the condensation of precursory hydroxides, the adhesion strength, thickness and compactness of MgO coating on the substrate are significantly enhanced by the intermediate ZrO2 layer which prevents the formation of corrosion product Mg2(OH)3Cl·4H2O. As a result, the MgO/ZrO2 duplex-layer coated specimen reveals relatively high corrosion resistance and superior stability in 3.5 wt% NaCl solution with respect to the MgO single-layer coated specimen. 相似文献
4.
Belén Díaz Emma Härkönen Jolanta ?wiatowska Vincent Maurice Antoine Seyeux Philippe Marcus Mikko Ritala 《Corrosion Science》2011,(6):2168-2175
ToF-SIMS, XPS, voltammetry and EIS investigation of the anti-corrosion properties of thin (10, 50 and 100 nm) alumina coatings grown by atomic layer deposition at 160 °C on steel is reported. Surface analysis shows a thickness-independent Al2O3 stoichiometry of the coating and trace contamination by the growth precursors. The buried coating/alloy interface has iron oxide formed in ambient air and/or resulting from the growth of spurious traces in the initial stages of deposition. Electrochemical analysis yields an exponential decay of the coating porosity over four orders of magnitude with increasing thickness, achieved by sealing of the more defective first deposited 10 nm. 相似文献
5.
Comparison of electrochemical corrosion behaviour of MgO and ZrO2 coatings on AM50 magnesium alloy formed by plasma electrolytic oxidation 总被引:1,自引:0,他引:1
Two types of PEO coatings were produced on AM50 magnesium alloy using pulsed DC plasma electrolytic oxidation process in an alkaline phosphate and acidic fluozirconate electrolytes, respectively. The phase composition and microstructure of these PEO coatings were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The corrosion behaviour of the coated samples was evaluated by open circuit potential (OCP) measurements, potentiodynamic polarization tests, and electrochemical impedance spectroscopy (EIS) in neutral 0.1 M NaCl solution. The results showed that PEO coating prepared from alkaline phosphate electrolyte consisted of only MgO and on the other hand the one formed in acidic fluozirconate solution was mainly composed of ZrO2, MgF2. Electrochemical corrosion tests indicated that the phase composition of PEO coating has a significant effect on the deterioration process of coated magnesium alloy in this corrosive environment. The PEO coating that was composed of only MgO suffered from localized corrosion in the 50 h exposure studies, whereas the PEO coating with ZrO2 compounds showed a much superior stability during the corrosion tests and provided an efficient corrosion protection. The results showed that the preparation of PEO coating with higher chemical stability compounds offers an opportunity to produce layers that could provide better corrosion protection to magnesium alloys. 相似文献
6.
The formation process of stannate conversion coating (CC) on AZ91D alloy was in-situ investigated by electrochemical noise (EN). The wavelet transform, as well as noise resistance (Rn) and spectral noise resistance (Rsn), had been employed to analyze the EN data. It was revealed that there exist two distinguishing stages of stannate CC formation process on AZ91D alloy, including an incubation stage companying with the nucleation and nuclei dissolution process, a periodical growth stage involving hemispherical particles growth and coating dissolution process. Furthermore, the results demonstrated that EN was a powerful tool to investigate rapid electrochemical process, such as CC formation process. 相似文献
7.
A Mg-HQ-rich primer was prepared by adding 45% pure magnesium particles and 5% 8-hydroxyquinoline in epoxy coating. The Mg-HQ-rich primer showed obviously better protection for AZ91D alloy than 50% Mg-rich primer. The additive 8-HQ combines with Mg2+ in the coating, forming a insoluble complex, MgQ2, instead of Mg(OH)2 on Mg particles. The MgQ2 layer may retard dissolution of magnesium particles and prolong the cathodic protection effect of Mg-HQ-rich primer. Additionally, the corrosion products may also block the defects in the primer and the active sites on the substrate surface, thereby further increase the corrosion resistance of the Mg-HQ-rich primer. 相似文献
8.
Al2O3 diffusion barriers of various thicknesses have been fabricated by filtered arc ion plating between the NiCrAlY coating and the O-Ti2AlNb alloy. Isothermal oxidation tests and three-point bend tests have been conducted to investigate the influence of the Al2O3 diffusion barriers on the oxidation and interfacial fracture behaviour of the coatings. The results indicate that the Al2O3 diffusion barrier defers interdiffusion and gives oxidation resistance of the NiCrAlY coatings. The thickness of the Al2O3 interlayer not only influences the oxidation behaviour but also affects the interfacial fracture properties. Additionally, thermal exposure affects the critical load in three-point bend tests. 相似文献
9.
In a neutral solution, coating formation by micro-arc oxidation (MAO) on AZ91HP magnesium alloy was studied. The process involved the substrate dissolution and coating development. During the first 5 s, the sample mass decreased, indicating substrate dissolution dominating the process. After 5 s, the sample mass began to increase and the coating development began to predominate the process. The coating was firstly nucleated on α phase and sparks initially appeared mainly on the edges of the sample. With treating proceeded, the coating was becoming uniform; meanwhile, microscopic pores of anodic coatings increased in size and decreased in number. 相似文献
10.
Study of the corrosion inhibition effect of sodium silicate on AZ91D magnesium alloy 总被引:2,自引:0,他引:2
The poor corrosion resistance of magnesium alloys is a major impediment to their applications in many fields. In this paper, sodium silicate as a corrosion inhibitor is studied on the inhibition effect of AZ91D magnesium alloy. From the results of the corrosion tests, sodium silicate could effectively improve the corrosion resistance of alloy at the optimum concentration 10 mmol/L, while the pH value range from 10.5 to 12.5 is preferable. The corrosion inhibition mechanism of the protective layers is also discussed. These results can provide a guide for the protection of magnesium alloy in the cooling water systems, etc. 相似文献
11.
Sol-gel alumina coatings were developed on the surface pre-treated (zinc-phosphated) mild steel substrate and subsequently sintered at 300 °C, 400 °C and 500 °C. The alumina sol was synthesised using aluminium iso-propoxide as a precursor material. FTIR of the boehmite (AlOOH) gel sintered at above-mentioned temperatures was employed to identify the presence of various functional groups. The microstructural features and the phase analysis of the sol-gel coated specimens were carried out using SEM and XRD respectively. The corrosion resistance of the sol-gel alumina coatings was evaluated by electrochemical measurement in 3.5% NaCl solution at room temperature. The abrasive wear behaviour of the sol-gel coated specimens was measured in two body (high stress) conditions. The experimental results revealed that the sol-gel coated specimen sintered at 400 °C has superior wear and corrosion resistance properties as compared to the sol-gel coated specimen sintered at 300 °C. However, the sol-gel coated specimen sintered at 500 °C has exhibited a very poor corrosion and wear resistance properties. Poor performance of the sol-gel coatings sintered at 500 °C could be explained to be due to (i) the presence of numerous cracks (ii) absence of organic groups in the coating. 相似文献
12.
Samples of AZ91D magnesium alloy were dipped into AlCl3–NaCl molten salt at different temperatures between 250 °C and 400 °C for 28800 s. The thickness of the alloying layer is increased with the rise of the treatment temperatures. The coating was mainly composed of Al12Mg17 and Al3Mg2 intermetallic compounds. The corrosion resistance of the coating which is obtained at 300 °C for 28800 s is the best. When the treatment temperature is higher than 300 °C, some cracks developed in the alloying layers. The cracks were resulted from the thermal stress due to the different thermal expansion coefficient of the AZ91D substrate and the alloying coating during the rapid cooling process. 相似文献
13.
One-, three- and five-layer SiO2–Al2O3 coatings were deposited on a FeCrAl alloy basis by the sol–gel method. Sols in which the molar ratio of tetraethoxysilan to aluminium tri-sec-butoxide was 1:1 and 1:3 were used.As the samples were being soaked at T = 1200 °C for t = 700 h the mass of the samples increased. Thermal shock (T = 1200 °C, 10,000 cycles) causes greater degradation of the surface than soaking at a constant temperature. The XPS and EDS results show that the composition of the top layer of the coatings changes during high temperature oxidation and thermal shock. The outward movement of aluminium cations results in surface enrichment with aluminium, particularly for the single-layer coatings. The measured energies of bonds Si 2p and Al 2p in the multilayer coatings indicate that a structure of aluminosilicates with a composition between that of mullite and that of sillimanite forms during sintering. 相似文献
14.
Local and global electrochemical impedances applied to the corrosion behaviour of an AZ91 magnesium alloy 总被引:1,自引:0,他引:1
The electrochemical behaviour of an AZ91 magnesium alloy was investigated in a low aggressive medium by means of local and global electrochemical impedance measurements. The results were compared to those obtained on a pure magnesium sample. It was possible to show the individual contribution of each phase constituting the alloy, and it was observed that the corrosion mechanism of the two phases was the same, controlled by the Mg dissolution. However, local impedance diagrams clearly indicated that the kinetics dissolution of the β-phase was slower than that of the α-phase, which was in good agreement with SEM observations. 相似文献
15.
The research explored ways of improving corrosion behaviour of AZ91D magnesium alloy through heat treatment for degradable biocompatible implant application. Corrosion resistance of heat-treated samples is studied in simulated body fluid at 37 °C using immersion and electrochemical testing. Heat treatment significantly affected microgalvanic corrosion behaviour between cathodic β-Mg17Al12 phase and anodic α-Mg matrix. In T4 microstructure, dissolution of the β-Mg17Al12 phase decreased the cathode-to-anode area ratio, leading to accelerated corrosion of α-Mg matrix. Fine β-Mg17Al12 precipitates in T6 microstructure facilitated intergranular corrosion and pitting, but the rate of corrosion was less than those of as-cast and T4 microstructures. 相似文献
16.
Influence of anodising current on the corrosion resistance of anodised AZ91D magnesium alloy 总被引:2,自引:0,他引:2
The thickness, chemical composition and microstructure of anodised coatings formed on magnesium alloy AZ91D at various anodising current densities were measured. It was found that all these parameters could be affected by anodising current density, and hence the coatings formed at different anodising current densities had different corrosion resistances. This suggests that the corrosion performance of an anodised coating could be improved if a properly designed current waveform is used for anodising. In addition, based on the experimental results, some physical, chemical and electrochemical reactions involved in the anodising process were proposed to explain the anodising behaviour in this paper. 相似文献
17.
ZnO particles were added in Mg-rich epoxy primer to improve the protection for AZ91D magnesium alloy. The well dispersed ZnO particles could play a role in electrical conduction instead of Mg particles, consequently the Mg–ZnO-rich primer exhibited good conductivity while the dissolution rate of Mg particles decreased. ZnO particles also improved physical crosslink density of the epoxy matrix, which could reduce defects and enhance the barrier property and adhesion of the coating. As the results, the epoxy primer with 40 wt.% Mg and 10 wt.% ZnO showed better protection and prolonged lifetime than the primer with 50 wt.% Mg. 相似文献
18.
A pure Al coating was deposited on AZ91D magnesium alloy through cold spray (CS) technique. The microstructure of the coating was characterized using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). It was found that the grain interfaces and subgrains formed close to the particle/particle boundaries. Electrochemical tests revealed that the cold sprayed pure Al coating had better pitting corrosion resistance than bulk pure Al with similar purity in neutral 3.5 wt.% NaCl solution. In addition, a mass-transfer step was found to be involved in the corrosion during 10 days immersion. 相似文献
19.
In previous publications of the authors, good performance of poly(ether imide) as corrosion protective coatings for magnesium AZ31 alloy was reported. It was suggested that during the sample degradation magnesium hydroxide could react with the imide ring forming magnesium polyamate and polyamic acid, but this could not be experimentally confirmed. In the present letter, we confirm the occurrence of this reaction by infrared and X-ray photoelectron spectroscopy and discuss its influence in the corrosion behavior observed in electrochemical impedance spectroscopy tests. 相似文献
20.
A Mg-rich epoxy primer was prepared by adding pure magnesium particles to an epoxy coating. The coating properties were studied with electrochemical impedance spectroscopy (EIS), scanning electronic microscopy (SEM) and X-ray diffraction (XRD). The Mg-rich primer showed better protection for AZ91D magnesium alloy than the same epoxy primer without Mg addition. The open circuit potential measurements showed cathodic protection effect of the Mg-rich primer on AZ91D alloy. Cross scratch testing showed that the Mg-rich primer provided better protection for the substrate than original epoxy coating. The precipitation of Mg(OH)2 in the coating also provided some degree of barrier protection. 相似文献