首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the effect of anionic and cationic surfactants on the dispersion of purified SWCNTs in water in terms of dispersibility and on electrical conductivity of TCFs and electronic band structures of SWCNTs. The dispersibility of surfactants in an aqueous SWCNT suspension is assessed with the amount of SWCNTs dispersed, the content of surfactants required to suspend SWCNTs, and the long-term stability of dispersion. Sodium dodecylbenzene sulfonate (SDBS) shows better dispersibility and electrical conductivity of SWCNTs than sodium dodecyl sulfate, sodium cholate, and cetyltrimethyl ammonium bromide. Electronic band structures of SWCNTs vary with surfactants and nitric acid treatment, investigated by using UV–Vis–NIR and Raman spectroscopy. Metallic and semiconducting SWCNTs and surfactants make electrostatic charge interactions between them, which occur in different manners according to the electronic types of tubes and the natures of surfactants. TCFs are fabricated by using the SWCNT suspension dispersed with SDBS, which reveal a low percolation threshold with the two dimensional percolation behavior. The highest ratio of dc to optical conductivity (σdc/σop) is observed to be ∼23.1, corresponding to sheet resistance of 69 Ω/sq at the 550-nm optical transmission of 80%, upon nitric acid treatment of the SWCNT films.  相似文献   

2.
Supramolecular surface modification of single-walled carbon nanotubes (SWCNTs) using an amphiphilic molecule containing a bent triptycene moiety and a hydrophilic oligo(ethylene glycol) chain is described. The surface modification was realized through the binding of the triptycene moiety onto the sidewall of SWCNTs through a π–π stacking interaction, and the oligo(ethylene glycol) chains extend into the water and act as dispersing agents, thus yielding an aqueous SWCNT dispersion. This dispersion is stable for more than six months and contains a high concentration of SWCNTs. The dispersion was characterized by absorption, fluorescence, and Raman spectroscopy. Based on shape-fitting of SWCNTs and the triptycene moiety, the stacking of triptycene moieties on the SWCNT sidewall shows a nice selectivity for SWCNTs with a diameter of 1.0 nm.  相似文献   

3.
Arc discharge single-walled carbon nanotubes (SWCNTs) were modified through different oxidative treatments and functionalization reactions. The modified SWCNT powders were dispersed in four different aqueous media and purified by ultracentrifugation. Extinction coefficients of the modified SWCNTs depended on the SWCNT type but did not depend on the dispersion medium. According to visible/near infrared spectroscopy, the purity of all the modified SWCNT dispersions substantially improved after ultracentrifugation; however, the spectrum profile, the degree of purity and the centrifugation yield were influenced by the SWCNT type, the surface functional groups and the dispersion medium. Semi-quantitative purity indexes calculated from optical absorption spectra were supported by transmission electron microscopy observations. Contents in metal impurities were analyzed by energy dispersive X-ray spectroscopy. SWCNT samples processed by oxidative acid treatments and ultracentrifugation showed metal contents of lower than 0.5 wt%.  相似文献   

4.
Single‐walled carbon nanotube (SWCNT) polyvinylimidazole (PVI) composites have been prepared by in situ emulsion polymerization. Dispersion of raw SWCNTs in the PVI matrix was improved by surface modification of the SWCNTs using nitric acid treatment and air oxidation. The carbonyl‐terminated SWCNTs were covalently bonded to PVI by in situ polymerization and the SWCNT/PVI composite was thus obtained. The morphological and structural characterizations of the surface‐functionalized SWCNTs and SWCNT/PVI composites were carried out by Fourier transform infrared spectroscopy, X‐ray diffraction, conductivity measurements, scanning, and transmission electron microscopy. Thermograms of the materials were determined by the differential scanning calorimetry technique. The characterization results indicate that PVI was covalently bonded to SWCNTs and a new material was then obtained. The functionalized SWCNTs showed homogenous dispersion in the composites, whereas purified SWCNT resulted in poor dispersion and nanotube agglomeration. SWCNT/PVI composites exhibited chemical stability enhancement in many common solvents. I–V curves of the samples exhibit an ohmic character. Conductivity values for pure SWCNTs, pure PVI and SWCNT/PVI composite were measured to be 3.47, 2.11 × 10−9, and 2.3 × 10−3 S/m, respectively. Because of resonance, a large dielectric constant is obtained for SWCNT/PVI composite, which is not observed for ordinary materials. POLYM. COMPOS., 2012. © 2012 Society of Plastics Engineers  相似文献   

5.
Wang L  Zhang L  Xue X  Ge G  Liang X 《Nanoscale》2012,4(13):3983-3989
The common aggregation of single-wall carbon nanotube (SWCNT) in solution is the critical obstacle to elucidate their unique physico-chemical characteristics and biological properties. Therefore, it is very important to overcome this barrier through manipulation of the weak interaction of small molecules with nanotube surface limited interface. A highly dispersed SWCNT system was achieved by binding with polycyclic organic compounds (POCs) including rhodamine 123, ethidium bromide, fluorescein isothiocyanate and 1-pyrene butyric acid as chaperons, in cooperation with sodium dodecyl sulfate. POCs were believed to penetrate through the interstices of aggregated SWCNTs and bind with individual SWCNTs to form highly dispersed and stable SWCNT-POC-surfactant conjugates in both water and phosphate buffer-serum solution, confirmed by gel electrophoresis, transmission electron microscopy and atomic force microscopy. The possible binding interaction includes π-π stacking with side-wall, electrostatic interactions with defect sites and coating surfactants. Compared to pristine SWCNTs, individual SWCNT-POC conjugates had improved transmembrane passage ability through both endocytosis and diffusion pathways, validated by laser scanning confocal microscopy and micro-Raman mapping techniques. For the applications of SWCNTs in drug delivery, in vitro imaging and other research fields, this novel strategy could provide highly dispersed SWCNTs with better efficiency of drug loading and stability.  相似文献   

6.
The selective synthesis of SWCNTs with narrow chirality and diameter distribution by methane decomposition over a Co–MgO catalyst is reported. Raman spectroscopy, temperature programmed oxidation (TPO), UV–Vis–NIR absorption spectroscopy, and nitrogen physisorption were used to probe SWCNTs morphology, reaction selectivity, SWCNTs chirality and diameter distribution, and carbon yield. The catalyst was examined by nitrogen physisorption, X-ray diffraction (XRD), temperature programmed reduction (TPR), and UV–Vis-diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. The results established a clear link between the degree of dispersion of Co species inside the MgO lattice and the catalyst activity and selectivity for SWCNT growth. High dispersion and stabilization of Co species influenced catalytic activity for methane decomposition and the high SWCNT selectivity. The yield of carbon and SWCNT selectivity increased with an increase in temperature, however, SWCNTs diameter distribution shifts to larger diameter tubes as synthesis temperature was increased.  相似文献   

7.
An amphiphilic diblock copolymer (PEtOz-PCL) based on hydrophilic poly(2-ethyl-2-oxazoline) (PEtOz) and hydrophobic poly(ε-caprolactone) (PCL) was adsorbed in aqueous phase on the surface of single-wall carbon nanotube to produce PEtOz-PCL-encapsulated SWCNTs (PEtOz-PCL/SWCNT) with the diameter about 30 nm. The Raman spectroscopy analysis indicated that the nanotubes were physically encapsulated by the block copolymer without chemical denaturation of the nanotube. PEtOz-PCL/SWCNTs exhibited pH-responsive reversible complexation with poly(acrylic acid) or poly(methacrylic acid) in aqueous phase due to the pH-dependent hydrogen bonding between the PEtOz outer shell of PEtOz-PCL/SWCNTs with carboxyl groups. In addition, by using PEtOz as a template for the formation of metal nanoparticles, Au and Pd nanoparticles were successfully hybridized with PEtOz-PCL/SWCNTs.  相似文献   

8.
The interaction of acetone with single wall carbon nanotubes (SWCNTs) was studied by temperature programmed desorption with mass spectrometry (TPD-MS), after reflux, sonication, or exposure to 7.6 Torr of acetone vapors at room temperature. Acetone molecules adsorb strongly on SWCNTs desorbing at ∼400-900 K, corresponding to desorption energies of ∼100-225 kJ/mol, as intact molecules. Exchange of intact adsorbed molecules with gas phase species was observed in successive dosing of hydrogenated and deuterated acetone molecules. The desorption energies reported here are in stark contrast to the desorption energies (∼75 kJ/mol) reported earlier for SWCNTs interacting with acetone under high vacuum at cryogenic temperatures. This result suggests activated adsorption/desorption, and is also observed for adsorption of ethanol, methane, n-butane and 1,3-butadiene on SWCNTs and on carbon black. Quantum chemical calculations suggest that adsorption in interstitial channels of bundles formed of large-diameter SWCNTs is possible and can account for high desorption barriers, a result of strong dispersion interactions between neighboring SWCNTs.  相似文献   

9.
Single-walled carbon nanotubes (SWCNTs) were functionalized in a three-step procedure. The first step is a radical reaction creating a covalent bond between the carbon nanotube surface and grafted p-methoxyphenyl functional groups. In a second step, a deprotection of the methoxy functions generates free alcohol groups and in the final step an esterification is done in order to install a double bond for further polymerization. Evidence that functionalization has actually occurred on the SWCNT sidewalls is furnished through investigations involving several complementary techniques (visual dispersion tests, transmission electron microscopy, thermal gravimetric analysis and adsorption volumetry). We show that surface properties of SWCNTs are changed throughout the chemical treatments and that the obtained level of functionalization is low. Incorporation of functionalized SWCNTs in a polymer (poly(methyl methacrylate)) matrix was done through an in situ polymerization process. Observations of the obtained composites using scanning and transmission electron microscopy illustrate that interactions between the SWCNT surface and the polymer matrix are improved.  相似文献   

10.
Several spectroscopic techniques have been used to investigate the presence of contaminants in a commercial purified single-walled carbon nanotube (SWCNT) bucky paper, to determine their cleaning procedure in ultra-high-vacuum conditions and to study how impurities influence the interaction between SWCNTs and gas phase molecules. Nickel catalyst particles and sodium-containing species, likely a residual of the surfactant bath, were fully removed only after prolonged (>2 h) annealing at 1270 ± 30 K. Other impurity elements (S and Si) remain in the material as localised clusters that do not interact with the SWCNTs and do not interfere with their properties.A dramatic difference was observed when the Na-contaminated or the Na-free nanotubes interacted with molecular oxygen. O2 adsorption was strongly altered by the Na traces, which simulated an intense sample oxidation causing a modification of the tube electronic properties. On the contrary, for the Na-free sample the lack of adsorbed oxygen and the stability of the C1s core level after large O2 doses demonstrated the absence of any chemical bond between SWCNTs and O2. Similarly, exposures to N2, H2O and CO do not have influence on the electronic properties of SWCNTs. Instead, a sizeable effect on the electronic spectra was observed for SO2, NO and NO2 adsorption. The sensitivity of the SWCNT electronic spectra to ppb quantities of nitrogen oxides and sulfur oxide undoubtedly foresees applications in the field of toxic gas sensing.  相似文献   

11.
Jun Matsui  Kohei Yamamoto 《Carbon》2009,47(6):1444-1362
Untreated single-walled carbon nanotubes (SWCNTs) were assembled at a liquid-liquid interface to form an ultrathin film. The SWCNTs were dispersed into water using sodium dodecyl sulfate (SDS) as a solubilizing agent. Then, hexane was added to the dispersion to create a liquid-liquid interface. The SWCNTs were assembled at the interface to form a smooth ultrathin film when ethanol was added to the SWCNT water dispersion/hexane solution. The assembly mechanism was considered to be caused by the decreased wettability of SDS-coated SWCNT during the addition of ethanol because of desorption of SDS from the SWCNT surface. The assembly was remarkably robust and easily transferable to substrates. An AFM image of the film transferred onto a silicon substrate shows a closely packed uniform film of 3-8 nm thickness. The SWCNT ultrathin film showed high transparency of ca. 97% with an electrical conductivity of 71.4 S/cm. Fabrication processing was carried out in ambient conditions, thereby making it an attractive application for use in flexible electric devices.  相似文献   

12.
New poly(ether ether ketone) (PEEK) based composites have been fabricated by the incorporation of single-walled carbon nanotubes (SWCNTs) using melt processing. Their structure, morphology, thermal and mechanical properties have been investigated. Scanning electron microscopy observations demonstrated a more uniform distribution of the CNTs for samples prepared following a processing route based on polymer ball milling and CNT dispersion in ethanol media. Thermogravimetric analysis indicated a remarkable improvement in the thermal stability of the matrix by the incorporation of SWCNTs. Differential scanning calorimetry showed a decrease in the crystallization temperature with increasing SWCNT content, whilst no significant changes were observed in the melting of the composites. The crystallite size determined by X-ray diffraction decreased at high SWCNT loading, which is attributed to the spatial limitations on crystal growth by confinement within the CNT network. Dynamic mechanical analysis revealed an increase in the storage moduli, hence in the rigidity of the systems, with increasing SWCNT content. Their addition shifts the glass transition peak to higher temperatures due to the restriction in chain mobility imposed by the CNTs. Higher thermal stability and mechanical strength were found for composites with improved dispersion of the SWCNTs.  相似文献   

13.
ABSTRACT: Here we demonstrate the simple fabrication of a single walled carbon nanotube (SWCNT) field emission electrode which shows excellent field emission characteristics and remarkable field emission stability without requiring post treatment. Chemically functionalized SWCNTs were chemically attached to a silicon substrate. The chemical attachment led to vertical-alignment of SWCNTs on the surface. Field emission sweeps and Fowler-Nordheim plots showed that the Si-SWCNT electrodes field emit with a low turn-on electric field of 1.5 V mu m-1 and high electric field enhancement factor of 3965. The Si-SWCNT electrodes were shown to maintain a current density of > 740 mu A cm -1 for 15 hr with negligible change in applied voltage. The results indicate that adhesion strength between SWCNTs and substrate is a much greater factor in field emission stability than previously reported.  相似文献   

14.
Stable dispersions of carbon black and nanodiamond in culture medium were prepared by adding a pre-mixed dispersion of commercial carbon black or nanodiamond in aqueous bovine serum albumin (BSA) solution to culture medium. Dynamic light scattering revealed that carbon black and nanodiamond dispersions prepared in both NaCl solution and culture medium were highly stable. From DLVO theory and the results of zeta potential measurements, the theoretical effect of the electrostatic interactions between adsorbed BSA molecules was found to be minimal. The asymmetric flow field-flow fractionation measurements revealed that 0.05 or 0.56 mg/mL of BSA molecules were adsorbed on 0.11 or 1.09 mg/mL of carbon black, respectively, indicating 1:2 complexation of BSA with the colloidal particles. In the case of nanodiamond, 0.06 or 0.60 mg/mL of BSA molecules were adsorbed on 0.10 or 1.05 mg/mL of nanodiamond, respectively, indicating 1:2 complexation of BSA, which is the same ratio as in the case of carbon black. The adsorbed BSA molecules served as an effective stabilizing agent for the carbon black and nanodiamond, ensuring dispersion stability for at least 1 week. The preparation of the dispersions can be easily carried out by other researchers for toxicity studies.  相似文献   

15.
梁晓风 《广州化工》2011,39(5):86-87,162
利用分子动力学模拟方法模拟了甲烷在不同直径的单壁碳纳米管(SWCNTs)中的扩散。模拟结果发现:当ε=325 K时,甲烷在直径为0.8 nm的SWCNT中的扩散呈现出单队列扩散;当ε从65 K增加为325 K时,甲烷在直径为1 nm和1.25 nm的SWCNTs中的扩散行为从正常扩散变为超扩散;在直径大于1.6 nm的SWCNTs中,ε值的变化并不影响甲烷在SWCNTs中的扩散行为。  相似文献   

16.
The selective synthesis of single-walled carbon nanotubes (SWCNTs) with narrow chirality and diameter distribution by methane decomposition over Fe–MgO catalyst is reported. The catalyst was examined by nitrogen physisorption, X-ray diffraction, temperature programmed reduction, X-ray photoelectron spectroscopy, and UV–Vis diffuse reflectance spectroscopy to elucidate the structure and chemical state of the species responsible for SWCNT growth. High resolution electron microscopy, Raman and optical absorption spectroscopy, temperature programmed oxidation, energy dispersive X-ray spectroscopy and nitrogen physisorption were used to probe reaction selectivity, SWCNT chirality and diameter distribution, carbon yield and effectiveness of purification protocols. The yield of carbon increased with an increase in temperature, although SWCNTs selectivity decreased above the optimum synthesis temperature. Results established a clear link between the degree of dispersion of iron oxide species inside the MgO lattice and the catalyst selectivity for SWCNT growth.  相似文献   

17.
The replacement of traditional conductive carbon additives with single wall carbon nanotubes (SWCNTs) in lithium metal oxide cathode composites has been shown to enhance thermal stability as well as power capability and electrode energy density. The dispersion of 1 wt% high purity laser-produced SWCNTs in a LiNi0.8Co0.2O2 electrode created an improved percolation network over an equivalent composite electrode using 4 wt% Super C65 carbon black; evidenced by additive connectivity in SEM images and an order of magnitude increase in electrode electrical conductivity. The cathode with 1 wt% SWCNT additives showed comparable active material capacity (185–188 mAh g−1), at a low rate, and Coulombic efficiency to the cathode composite with 4 wt% Super C65. At increased cycling rates, the cathode with SWCNT additives had higher capacity retention with more than three times the capacity at 10C (16.4 mA cm−2). The thermal stability of the electrodes was evaluated by differential scanning calorimetry after charging to 4.3 V and float charging for 12 h. A 40% reduction of the cathode exothermic energy released was measured when using 1 wt% SWCNTs as the additive. Thus, the results demonstrate that replacing traditional conductive carbon additives with a lower weight loading of SWCNTs is a simple way to improve the thermal transport, safety, power, and energy characteristics of cathode composites for lithium ion batteries.  相似文献   

18.
The effect of montmorillonite and shear stress on the orientation of single walled carbon nanotubes and properties of SWCNT/MMT/polypropylene composite was investigated. The effect of functionalization of SWCNT on the orientation was also investigated. Polarized Raman spectroscopy was used to analyze the orientation of the SWCNTs. Orientation of SWCNTs was dependent on the experienced shear stress and functionalization of SWCNTs. The addition of MMT also improved the orientation of functionalized SWCNTs, while its effect was not significant for pristine SWCNTs. The existence of critical shear stress was observed for the orientation of the SWCNTs and the orientation of SWCNTs was found to occur more efficiently above this critical shear stress. Melt viscosity and heat of fusion data also confirmed that the addition of MMT‐induced improved orientation and dispersion of SWCNTs, especially for functionalized SWCNTs. POLYM. ENG. SCI., 54:2455–2459, 2014. © 2013 Society of Plastics Engineers  相似文献   

19.
Lilin Wang  Lin Duan 《Carbon》2010,48(13):3906-149
Adsorption of single-ringed N- and S-heterocyclic aromatics on single-walled carbon nanotubes (SWCNTs) was examined to explore the potential of using carbon nanotubes (CNTs) as drug carriers and environmental adsorbents. Adsorbates included pyrimidine, 2-aminopyrimidine, 4,6-diaminopyrimidine, thiophene, benzene and aniline. Adsorbents included pristine SWCNTs, oxidized SWCNTs, and nonporous graphite. Adsorption of N- and S-heterocyclic aromatics was significantly enhanced by non-hydrophobic interactions. Particularly, the -NH2-substituted compounds exhibited much stronger (up to 2 orders of magnitude) adsorption affinities to oxidized SWCNTs than benzene, even though they are much less hydrophobic. The π-π coupling or electron donor-acceptor (EDA) interactions are likely adsorption-enhancement mechanisms for all six compounds. The lone-pair electrons of the N heteroatoms and the -NH2 group can enable n-π EDA interactions with SWCNT surfaces. Lewis acid-base interactions are another significant adsorption-enhancement mechanism for the -NH2-substituted compounds (and possibly for pyrimidine) on SWCNTs. For the N-heterocyclic aromatics, adsorption affinity is highly dependent on the O-functionality of the SWCNT surface and on solution pH, due to the speciation reactions of both adsorbates and SWCNT surface O-functional groups, indicating that selective adsorption of N-heterocyclic aromatics is possible by combining the surface functionality of CNTs and solution chemistry.  相似文献   

20.
Single-walled carbon nanotubes (SWCNTs) with high aspect ratios were well dispersed in organic solvents to form stable suspensions using poly(2-dimethylaminoethyl methacrylate-co-styrene) (poly(DMAEMA-co-St)). The polymeric dispersant poly(DMAEMA-co-St) was synthesized in various compositions by atom transfer radical polymerization. The structures and the compositions of the poly(DMAEMA-co-St) were confirmed by 1H NMR spectroscopy. The stability and dispersion of the functionalized SWCNTs with high aspect ratios in suspension were observed by dispersion stability analysis, transmission electron microscopy, scanning electron microscopy, and atomic force microscopy. The existence of unbundled SWCNTs was confirmed by Raman and ultraviolet/visible/near-infrared spectroscopy. Finally, SWCNT transparent conductive films with high transmittances and low sheet resistances were prepared on a poly(ethylene terephthalate) substrate using a spin-coating method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号