首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the work presented in this paper, an alternative process concept that can be applied as retrofitting option in coal-fired power plants for CO2 capture is examined. The proposed concept is based on the combination of two fundamental CO2 capture technologies, the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing. A 330 MWel Greek lignite-fired power plant and a typical 600 MWel hard coal plant have been examined for the process simulations. In a retrofit application of the ECO-Scrub technology, the existing power plant modifications are dominated by techno-economic restrictions regarding the boiler and the steam turbine islands. Heat integration from processes (air separation, CO2 compression and purification and the flue gas treatment) can result in reduced energy and efficiency penalties. In the context of this work, heat integration options are illustrated and main results from thermodynamic simulations dealing with the most important features of the power plant with CO2 capture are presented for both reference and retrofit case, providing a comparative view on the power plant net efficiency and energy consumptions for CO2 capture. The operational characteristics as well as the main figures and diagrams of the plant’s heat balances are included.  相似文献   

2.
Amine and other liquid solvent CO2 capture systems capture have historically been developed in the oil and gas industry with a different emphasis to that expected for fossil fuel power generation with post-combustion capture. These types of units are now being adapted for combustion flue gas scrubbing for which they need to be designed to operate at lower CO2 removal rates - around 85-90% and to be integrated with CO2 compression systems. They also need to be operated as part of a complete power plant with the overall objective of turning fuel into low-carbon electricity.The performance optimisation approach for solvents being considered for post-combustion capture in power generation therefore needs to be updated to take into account integration with the power cycle and the compression train. The most appropriate metric for solvent assessment is the overall penalty on electricity output, rather than simply the thermal energy of regeneration of the solvent used.Methodologies to evaluate solvent performance that have been reported in the literature are first reviewed. The results of the model of a steam power cycle integrated with the compression system focusing on key parameters of the post-combustion capture plant - solvent energy of regeneration, solvent regeneration temperature and desorber pressure - are then presented. The model includes a rigorous thermodynamic integration of the heat available in the capture and compression units into the power cycle for a range of different solvents, and shows that the electricity output penalty of steam extraction has a strong dependence on solvent thermal stability and the temperature available for heat recovery. A method is provided for assessing the overall electricity output penalty (EOP), expressed as total kWh of lost output per tonne of CO2 captured including ancillary power and compression, for likely combinations of these three key post-combustion process parameters. This correlation provides a more representative method for comparing post-combustion capture technology options than the use of single parameters such as solvent heat of regeneration.  相似文献   

3.
The CO2 post-combustion capture with amine solvents is modeled as a complex system interconnecting process energy consumption and solvent degradation and emission. Based on own experimental data, monoethanolamine degradation is included into a CO2 capture process model. The influence of operating conditions on solvent loss is validated with pilot plant data from literature. Predicted solvent consumption rates are in better agreement with plant data than any previous work, and pathways are discussed to further refine the model. Oxidative degradation in the absorber is the largest cause of solvent loss while thermal degradation does not appear as a major concern. Using a single model, the process exergy requirement decreases by 10.8% and the solvent loss by 11.1% compared to our base case. As a result, this model provides a practical tool to simultaneously minimize the process energy requirement and the solvent consumption in post-combustion CO2 capture plants with amine solvents.  相似文献   

4.
This paper presents the results of the cost of energy (COE) analysis of an integrated gasification combined cycle (IGCC) power plant with respect to CO2 capture ratio under the climate change scenarios. To obtain process data for a COE analysis, simulation models of IGCC power plants and an IGCC with carbon capture and sequestration (CCS) power plant, developed by the United States Department of Energy (DOE) and National Energy Technology Laboratory (NETL), have been adopted and simulated using Aspen Plus. The concept of 20-year levelized cost of energy (LCOE), and the climate change scenarios suggested by International Energy Agency (IEA) are also adopted to compare the COE of IGCC power plants with respect to CO2 capture ratio more realistically. Since previous studies did not consider fuel price and CO2 price changes, the reliability of previous results of LCOE is not good enough to be accepted for an economic comparison of IGCC power plants with respect to CO2 capture ratio. In this study, LCOEs which consider price changes of fuel and CO2 with respect to the climate change scenarios are proposed in order to increase the reliability of an economic comparison. And the results of proposed LCOEs of an IGCC without CCS power plant and IGCC with CCS (30%, 50%, 70% and 90% capture-mole basis- of CO2 in syngas stream) power plants are presented.  相似文献   

5.
The most common technology for postcombustion CO2 capture for existing power plants is the amine solvent scrubber. The energy consumption for capturing CO2 from flue gases using amine solvent technology is 15 to 30% of the power plant electricity production. Hence, there is a need to develop more efficient methods of removing CO2. Here, we show a novel design, obtained using multiphase CFD, and of a fluidized‐bed reduced pressure regenerator, coupled with a fluidized‐bed sorber, which has the potential to reduce the energy consumption. The undesirable core‐annular flow regime in the riser‐sorber is eliminated using multiple jet inlets and large particles leading to a shorter height. Up to 88% of the heat liberated in the riser‐sorber is recovered in the downer‐regenerator. © 2013 American Institute of Chemical Engineers AIChE J, 59: 4519–4537, 2013  相似文献   

6.
A. Lawal  P. Stephenson  H. Yeung 《Fuel》2010,89(10):2791-2801
Post-combustion capture by chemical absorption using MEA solvent remains the only commercial technology for large scale CO2 capture for coal-fired power plants. This paper presents a study of the dynamic responses of a post-combustion CO2 capture plant by modelling and simulation. Such a plant consists mainly of the absorber (where CO2 is chemically absorbed) and the regenerator (where the chemical solvent is regenerated). Model development and validation are described followed by dynamic analysis of the absorber and regenerator columns linked together with recycle. The gPROMS (Process Systems Enterprise Ltd.) advanced process modelling environment has been used to implement the proposed work. The study gives insights into the operation of the absorber-regenerator combination with possible disturbances arising from integrated operation with a power generation plant. It is shown that the performance of the absorber is more sensitive to the molar L/G ratio than the actual flow rates of the liquid solvent and flue gas. In addition, the importance of appropriate water balance in the absorber column is shown. A step change of the reboiler duty indicates a slow response. A case involving the combination of two fundamental CO2 capture technologies (the partial oxyfuel mode in the furnace and the post-combustion solvent scrubbing) is studied. The flue gas composition was altered to mimic that observed with the combination. There was an initial sharp decrease in CO2 absorption level which may not be observed in steady-state simulations.  相似文献   

7.
The most common technology for postcombustion of CO2 capture is the amine solvent scrubber. The energy consumption for capturing CO2 from flue gases using amine solvent technology is 15–30% of the power plant electricity production. Hence, there is a need to develop more efficient methods of removing CO2. A circulating fluidized bed using sodium or potassium carbonates is potentially such a process, as their high decomposition pressures allow regeneration at low temperatures using waste heat rather than steam from the power plant. But equilibrium data for the sorbents require the use of several cooled stages to achieve high CO2 conversions. Here, a method of computing such a number of stages for a given CO2 conversion was developed using multiphase computational fluid dynamics. It was found that it required six equilibrium stages to remove 96% of CO2 with the initial mole fraction of 0.15 in a sorption riser. © 2017 American Institute of Chemical Engineers AIChE J, 63: 5267–5279, 2017  相似文献   

8.
The concept of complementary decarbonisation of power generation from renewable energy sources and fossil fuels consists of their integration in one system. A technology network in the form of a CCU‐combined power plant is proposed for the energy generation from fossil fuels by a coal power plant with CO2 recovery from the exhaust gases and a pyrolysis of natural gas to hydrogen and carbon as a basic technology. This technology network is completed by a reverse water‐gas shift reaction for the conversion of the CO2 to CO, which will react with the hydrogen in a Fischer‐Tropsch synthesis for synthetic diesel. The recovered energy from the exothermic Fischer‐Tropsch synthesis meets the energy needs of CO2 scrubbing. The carbon from the pyrolysis can replace other fossil carbon or can be sequestered.  相似文献   

9.
The techno-economic evaluation of four novel integrated gasification combined cycle (IGCC) power plants fuelled with low rank lignite coal with CO2 capture facility has been investigated using ECLIPSE process simulator. The performance of the proposed plants was compared with two conventional IGCC plants with and without CO2 capture. The proposed plants include an advanced CO2 capturing process based on the Absorption Enhanced Reforming (AER) reaction and the regeneration of sorbent materials avoiding the need for sulphur removal component, shift reactor and/or a high temperature gas cleaning process. The results show that the proposed CO2 capture plants efficiencies were 18.5–21% higher than the conventional IGCC CO2 capture plant. For the proposed plants, the CO2 capture efficiencies were found to be within 95.8–97%. The CO2 capture efficiency for the conventional IGCC plant was 87.7%. The specific investment costs for the proposed plants were between 1207 and 1479 €/kWe and 1620 €/kWe and 1134 €/kWe for the conventional plants with and without CO2 capture respectively. Overall the proposed IGCC plants are cleaner, more efficient and produce electricity at cheaper price than the conventional IGCC process.  相似文献   

10.
Capturing and storing the greenhouse gas carbon dioxide produced by power plants and chemical production plants before it is emitted to the atmosphere will play a major role in mitigation climate change. Among the different technologies, aqueous amine absorption/stripping is a promising one. In this study, five different configurations for aqueous absorption/stripping have been compared with regards to capital investment and energy consumption. The process simulations are made with the use of Unisim Design and ProTreat, while for the cost calculations, data from Turton et al. (2009) and Sinnott and Towler (2009) are used.We cannot identify one single configuration to be the optimum always for all situations, as it depends on many parameters like energy and material costs, interest rate, plant complexity, etc. With the assumption and estimated parameters in this study we find that vapor recompression configuration is the best configuration because it has the lowest total capture cost and CO2 avoided cost. In addition, the plant complexity does not increase very much compared to the benchmark. The split-stream configuration with cooling of semi-lean amine is the second best. However, this configuration increases the investment cost and plant complexity significantly.The effect of heat integration between the compression section and the stripper is also considered. We can reduce heat requirement by heat integration, but since the inlet temperature to the compressors become higher, the compression efficiency will decrease and compression work will increase. In addition, the capital cost and the complexity of the plant will increase. Because of the higher inlet temperature the water content of produced CO2 is higher and consequently the corrosion problems is more serious in pipes and equipment for compression and injection section.  相似文献   

11.
Environmental legislation, with its increasing pressure on the energy sector to control greenhouse gases, is a driving force to reduce CO2 emissions. In this paper, pre-combustion CO2 capture through integration of a site utility system with an integrated gasification combined cycle (IGCC) is investigated as an option to provide a compressed CO2-rich stream from a process site for sequestration. This work presents a two-step procedure for integration and optimization of a site utility system with an IGCC plant: (i) screening and optimization of IGCC plant performance parameters; (ii) integration and optimization of the utility system of the site with the IGCC plant. In the first step, an optimization approach applies the results of screening studies based on rigorous simulation of the IGCC. Having fixed the inlet fuel flow rate, the IGCC design parameters (including oxygen consumption, diluent flow rate and turbine exit pressure) are optimized for maximum power generation. Energy flows between the IGCC and CO2 compression train are considered. In the second step, the economic and operating performance of the utility system integrated with the IGCC plant are modeled and optimized for minimum operating cost to find the most appropriate level of integration. In a case study illustrating the approach, 94% of the fuel is gasified; additional power generation offsets the operating costs of pre-combustion CO2 capture.  相似文献   

12.
Scope of the work presented in this paper is to examine and evaluate the application of the oxyfuel combustion CO2 capture technology in a lignite-fired power plant from an economic point of view. Results from simulations dealing with the most important features for CO2 reduction are performed. The operational characteristics, the efficiency penalties as well as the net efficiency reduction emerging from the Greenfield application of the oxyfuel technology are presented.CO2 capture costs and the energy requirements associated with the oxyfuel method affect significantly the cost of electricity. This paper focuses on the analysis of the techno-economic factors that result in the increase of the cost of electricity in comparison with the conventional air-fired power plant. For this reason a typical Greek lignite power plant is used as a reference case. Any technical, economic and financial assumptions applied provide a common basis for both power plants (i.e., conventional and oxyfuel) for the assessment of the change of the cost of electricity and the CO2 capture cost. The oxyfuel simulations are performed by taking into account the adoption of measures for the exploitation of heat that would otherwise be wasted. Such measures concern both the water/steam cycle and the gas flows (e.g., the oxygen flow). Heat integration from processes - such as the air separation, the CO2 compression and purification and the flue gas treatment - is adopted in order to lower as much as possible the efficiency penalty.The cycle calculations have been performed using the thermodynamic cycle calculation software ENBIPRO (ENergie-BIllanz-PROgram). ENBIPRO is a powerful tool for heat and mass balance solving of complex thermodynamic circuits, calculation of efficiency, exergetic and exergoeconomic analysis of power plants. The software code models all pieces of equipment that usually appear in power plant installations and can accurately calculate all thermodynamic properties (temperature, pressure, enthalpy) at each node of the thermodynamic circuit, power consumption of each component, flue gas composition, etc. The code has proven its validity by accurately simulating a large number of power plants and through comparison of the results with other commercial software (Stamatelopoulos GN. Calculation and optimisation of power plant thermodynamic cycles. VDI-Regulations. Series 6, No. 340. Braunchweig, Mechanical Engineering Department; 1996 [in German]).  相似文献   

13.
A significant proportion of power generation stems from coal-combustion processes and accordingly represents one of the largest point sources of CO2 emissions worldwide. Coal power plants are major assets with large infrastructure and engineering units and an operating life span of up to 50 years. Hence, any process design modification to reduce greenhouse gas emissions may require significant investment. One of the best options to utilize existing infrastructure is to retrofit the power station fleet by adding a separation process to the flue gas, a practice known as postcombustion capture (PCC). This review examines the recent PCC development and provides a summary and assessment of the state of play in this area and its potential applicability to the power generation industry. The major players including the various institutes, government, and industry consortia are identified along with flue gas PCC demonstration scale plants. Of the PCC technologies reviewed, amine-based absorption is preeminent, being both the most mature and able to be adapted immediately, to the appropriate scale, for power station flue gas with minimal technical risk. Indeed, current commercial applications serve niches in the merchant CO2 market, while a substantial number of smaller scale test facilities are reported in the literature with actual CO2 capture motivated demonstrations now commencing. Hybrid membrane/absorption systems, also known as membrane contactors, offer the potential for the lowest energy requirements, possibly 10% of current direct scrubbers but are at an early stage of development. Other methods being actively pursued as R&;D projects include solid absorbents, solid adsorbents, gas membrane separators, and cryogenic separation. The variety and different maturities of these competing technologies make technical comparison largely subjective, but useful insights could be gained through the development and application of econometric techniques such as ‘real options’ within this context. Despite these limitations, it is clear from this review that amine scrubbing is likely to be adapted first into the existing power station fleet, while less mature technologies will grow and become integrated with the development of future power stations.  相似文献   

14.
15.
CO2 capture from power plants, combined with CO2 storage, is a potential means for limiting the impact of fossil fuel use on the climate. In this paper, three oxy-fuel plants with incorporated CO2 capture are evaluated from an economic and environmental perspective. The oxy-fuel plants, a plant with chemical looping combustion with near 100% CO2 capture and two advanced zero emission plants with 100% and 85% CO2 capture are evaluated and compared to a similarly structured reference plant without CO2 capture. To complete the comparison, the reference plant is also considered with CO2 capture incorporating chemical absorption with monoethanolamine. Two exergy-based methods, the exergoeconomic and the exergoenvironmental analyses, are used to determine the cost-related and the environmental impacts of the plants, respectively, and to reveal options for improving their overall effectiveness.For the considered oxy-fuel plants, the investment cost is estimated to be almost double that of the reference plant, mainly due to the equipment used for oxygen production and CO2 compression. Furthermore, the exergoeconomic analysis reveals an increase in the cost of electricity with respect to the reference plant by more than 20%, with the advanced zero emission plant with 85% CO2 capture being the most economical choice. On the other hand, a life cycle assessment reveals a decrease in the environmental impact of the plants with CO2 capture, due to the CO2 and NOx emission control. This leads to a reduction in the overall environmental impact of the plants by more than 20% with respect to the reference plant. The most environmentally friendly concept is the plant with chemical looping combustion.  相似文献   

16.
An innovative, technical approach for the reduction of CO2 emissions is presented that utilizes alkaline wastes to capture CO2 from flue gases in stable mineral form. Comprehensive pilot‐scale experiments were conducted with the developed flue gas scrubbing system at a power plant site. By optimizing the process parameters gas flux, CO2 partial pressure, circulation flux and suspension liquid‐to‐solid ratio, a CO2 binding of 40 – 90 g kg–1 waste could be reached and up to 25 % of the CO2 could be captured. The new technique is economically advantageous especially when both alkaline waste and CO2 are produced on site and when the carbonated products can be used as secondary resources.  相似文献   

17.
《分离科学与技术》2012,47(13):1954-1962
Solvent absorption and membrane gas separation are two carbon capture technologies that show great potential for reducing emissions from stationary sources such as power plants. Here, plants combining chemical solvent absorption and membrane gas separation are considered for post-combustion capture as well as pre-combustion capture. In all ASPEN HYSYS simulations the membrane stage initially concentrates CO2 into either the permeate or the retentate stream, which is then passed to a monoethanolamine (MEA) based solvent absorption process. In particular, post-combustion capture scenarios examined a membrane that is selective for CO2 against N2, while for the pre-combustion scenario a H2-selective membrane was studied. It was found the energy demand of the combined hybrid plant was always more than that of a stand alone MEA solvent process. This was mainly due to the need to generate a pressure driving force upstream of the membrane in the post-combustion scenario or to recompress downstream gas streams in the pre-combustion scenarios. For both scenarios concentrating the CO2 in the feed to the solvent system reduced the absorber column height and diameter, which could represent a CAPEX saving for the hybrid plant, dependent upon the membrane price. The use of a hydrogen selective membrane downstream of an oxygen fired gasifier was identified as the most prospective scenario, as it led to significant reductions in absorber size, for a relatively small membrane area and energy penalty.  相似文献   

18.
Under the Paris agreement, China has committed to reducing CO2 emissions by 60%–65% per unit of GDP by 2030. Since CO2 emissions from coal-fired power plants currently account for over 30% of the total carbon emissions in China, it will be necessary to mitigate at least some of these emissions to achieve this goal. Studies by the International Energy Agency (IEA) indicate CCS technology has the potential to contribute 14% of global emission reductions, followed by 40% of higher energy efficiency and 35% of renewable energy, which is considered as the most promising technology to significantly reduce carbon emissions for current coal-fired power plants. Moreover, the announcement of a Chinese national carbon trading market in late 2017 signals an opportunity for the commercial deployment of CO2 capture technologies.Currently, the only commercially demonstrated technology for post-combustion CO2 capture technology from power plants is solvent-based absorption. While commercially viable, the costs of deploying this technology are high. This has motivated efforts to develop more affordable alternatives, including advanced solvents, membranes, and sorbent capture systems. Of these approaches, advanced solvents have received the most attention in terms of research and demonstration. In contrast, sorbent capture technology has less attention, despite its potential for much lower energy consumption due to the absence of water in the sorbent. This paper reviews recent progress in the development of sorbent materials modified by amine functionalities with an emphasis on material characterization methods and the effects of operating conditions on performance. The main problems and challenges that need to be overcome to improve the competitiveness of sorbent-based capture technologies are discussed.  相似文献   

19.
Adding ethanol to an aqueous amine solution offers several advantages for post-combustion CO2 capture. The equilibrium isotherms at higher temperatures shift towards lower loadings, leading to an easier desorption. At constant temperature in the desorber bottom, the desorber pressure is increased, leading to energy savings in the CO2 compression. Alternatively, at constant desorber pressure, the temperature in the desorber bottom is decreased, leading to a smaller efficiency drop of the power plant. Furthermore, the absorption rate of CO2 is enhanced by adding ethanol. In the present work, the potential of using ethanol as a co-solvent for a 0.3 g/g aqueous monoethanolamine (MEA) solution is assessed based on simulations with an equilibrium stage model. A major drawback is the volatility of ethanol. The recovery of ethanol can be achieved using a water scrubber and subsequent stripping. The recovered ethanol vapor is sent directly to the desorber for heat integration. The process with ethanol recovery results in an increased complexity of the capture plant, difficulties in controlling the water balance and higher investment costs and offers, if any, only a moderate energetic advantage. The process concept could, however, be used for other co-solvents with similar properties as ethanol but lower vapor pressures.  相似文献   

20.
CO2 capture systems based on the carbonation/calcination loop have gained rapid interest due to promising carbonator CO2 capture efficiency, low sorbent cost and no flue gases treatment is required before entering the system. These features together result in a competitively low cost CO2 capture system. Among the key variables that influence the performance of these systems and their integration with power plants, the carbonation conversion of the sorbent and the heat requirement at calciner are the most relevant. Both variables are mainly influenced by CaO/CO2 ratio and make-up flow of solids. New sorbents are under development to reduce the decay of their carbonation conversion with cycles. The aim of this study is to assess the competitiveness of new limestones with enhanced sorption behaviour applied to carbonation/calcination cycle integrated with a power plant, compared to raw limestone. The existence of an upper limit for the maximum average capture capacity of CaO has been considered. Above this limit, improving sorbent capture capacity does not lead to the corresponding increase in capture efficiency and, thus, reduction of CO2 avoided cost is not observed. Simulations calculate the maximum price for enhanced sorbents to achieve a reduction in CO2 removal cost under different process conditions (solid circulation and make-up flow). The present study may be used as an assessment tool of new sorbents to understand what prices would be competitive compare with raw limestone in the CO2 looping capture systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号