首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Butterfat was chemically modified via combined hydrolysis and interesterification, catalyzed by a commercial lipase immobilized onto a bundle of hydrophobic hollow fibers. The main goal of this research effort was to engineer butterfat with improved nutritional properties by taking advantage of the sn-1,3 specificity and fatty acid specificity of a lipase in hydrolysis and ester interchange reactions, and concomitantly decrease its level of long-chain saturated fatty acid residues (viz., lauric, myristic, and palmitic acids) and change its melting properties. All reactions were carried out at 40°C in a solvent-free system under controlled water activity, and their extent was monitored via chromatographic assays for free fatty acids, esterified fatty acid moieties, and triacylglycerols; the thermal behavior of the modified butterfat was also assessed via calorimetry. Lipase-modified butterfat possesses a wider melting temperature range than regular butterfat. The total saturated triacylglycerols decreased by 2.2%, whereas triacylglycerols with 28–46 acyl carbons (which contained two or three lauric, myristic, or palmitic acid moieties) decreased by 13%. The total monoene triacylglycerols increased by 5.4%, whereas polyene triacylglycerols decreased by 2.9%. The triacylglycerols of interesterified butterfat had ca. 10.9% less lauric, 10.7% less myristic, and 13.6% less palmitic acid residues than those of the original butterfat.  相似文献   

2.
Seeds from different collections of cultivatedSesamum indicum Linn. and three related wild species [specifically,S. alatum Thonn.,S. radiatum Schum and Thonn. andS. angustifolium (Oliv.) Engl.] were studied for their oil content and fatty acid composition of the total lipids. The wild seeds contained less oil (ca. 30%) than the cultivated seeds (ca. 50%). Lipids from all four species were comparable in their total fatty acid composition, with palmitic (8.2–12.7%), stearic (5.6–9.1%), oleic (33.4–46.9%) and linoleic acid (33.2–48.4%) as the major acids. The total lipids from selected samples were fractionated by thin-layer chromatography into five fractions: triacylglycerols (TAG; 80.3–88.9%), diacylglycerols (DAG; 6.5–10.4%), free fatty acids (FFA; 1.2–5.1%), polar lipids (PL; 2.3–3.5%) and steryl esters (SE; 0.3–0.6%). Compared to the TAG, the four other fractions (viz, DAG, FFA, PL and SE) were generally characterized by higher percentages of saturated acids, notably palmitic and stearic acids, and lower percentages of linoleic and oleic acids in all species. Slightly higher percentages of long-chain fatty acids (20∶0, 20∶1, 22∶0 and 24∶0) were observed for lipid classes other than TAG in all four species. Based on the fatty acid composition of the total lipids and of the different acyl lipid classes, it seems thatS. radiatum andS. angustifolium are more related to each other than they are to the other two species.  相似文献   

3.
Total kernel lipids extracted fromCalophyllum inophyllum, Guttifereae amounted to 60.1% of the dry kernel. The total lipids consisted of 92.0% of neutral lipids, 6.4% glycolipids and 1.6% phospholipids. Neutral lipids consisted of triacylglycerols (82.3%), free fatty acids (7.4%) and small amounts of diacylglycerols, monoacylglycerols and sterols. At least four glycolipids and five phospholipids were identified. Acylmonogalactosyldiacylglycerol and monogalactosylmonoacylglycerol were major glycolipids; while monogalactosyldiacylglycerol and an acylated sterolglucoside were present in small amounts. The phospholipids consisted of phosphatidylethanolamine and phosphatidylcholine as major phospholipids, and minor amounts of phosphatidic acid, phosphatidylserine and lysophosphatidylcholine. The fatty acid composition of these different neutral lipids, glycolipids and phospholipids was determined.  相似文献   

4.
The adulteration of butter is a serious problem due to economic advantages taken by replacing expensive milk fat with cheaper oil without informing the customers. The authentication of milk fat methods include analysis of bulk components, especially triacylglycerols, fatty acids, sterols and tocopherols. Fatty acid and sterol composition was analysed by using GC‐MS. TAG and tocopherol profiles were examined by HPLC with diode array (DAD) and fluorescence detectors (FLDs). In addition, identification of selected TAG of butter fat was conducted by LC‐atmospheric pressure chemical ionisation (APCI)/MS technique. The lipid composition of 16 different butters available on Polish market were investigated. The cholesterol content in butter fat ranged from 176.8 to 264.8 mg/100 g of fat and in two samples of milk fat β‐sitosterol was found. The total saturated fatty acid (SFA) content in milk fat was 67.1–73.5%, monounsaturated fatty acid 24.5–30.5% and polyunsaturated fatty acid was 1.2–2.0%. Abnormalities in fatty acid profiles, e.g. high concentration of linoleic fatty acid, were found in two butters. These abnormalities were also determined in TAG profiles. The examination of tocopherols in butter fat confirmed that two products were adulterated by the addition of plant oils because they contained δ‐tocopherol which is typical for plant origin foodstuffs. The methods described are useful for investigating milk fat adulterations, and the most efficient are analysis of sterols and tocopherols composition. Practical applications: The described methods are useful for investigating adulteration of milk fat. Traditional strategies rely on examination of fatty acids methyl esters and TAG; these methods have some disadvantages. Due to the variability of fatty acid composition of milk fat and because TAG analysis is complex and time consuming, FA analysis is not an efficient approach for butter authentication. The most efficient method for butter authentication is qualitative and quantitative analysis of sterols and tocopherols. This analysis will determine if components of plant origin were used for butter production.  相似文献   

5.
Niger seed samples were collected from different regions in Ethiopia for determination of oil content, and of fatty acid, tocopherol and sterol composition in the seed oil by gas-liquid chromatography and high-performance liquid chromatography methods. There was a large variation in oil content, ranging from 29 to 39%. More than 70% of the fatty acids was linoleic acid (18∶2) in all samples analyzed. The other predominant fatty acids were palmitic (16∶0), stearic (18∶0) and oleic (19∶1) at a range of 6 to 11% each. Total polar lipids recovered after preparative thin-layer chromatography comprised a small fraction of the total lipids. They had higher 16∶0 and lower 18∶2 contents than the triacylglycerols.α-Tocopherol was the predominant tocopherol in all samples, 94–96% of the total amounting to 630–800 μg/g oil. More than 40% of the total sterols wasβ-sitosterol,ca. 2000μg/g oil. The other major sterols were campesterol and stigmasterol, ranging from 11 to 14%. The Δ5- and Δ7-avenasterols were in the range of 4 to 7%. From the samples studied, no conclusion could be drawn regarding the influence of altitude or location on oil content, tocopherol and/or sterol contents. The results of the present study on niger seed oil are discussed in comparison with known data for common oils from Compositae,viz, safflower and sunflower.  相似文献   

6.
7.
A few solid and semi-solid fats of tree origin in India, namely sal (Shorea robusta), kokum(Garcinia indica), mahua (Madhuca latifolia), dhupa (Vateria indica) and mango (Mangifera indica), were chosen for modification into cocoa butter substitutes by lipase-catalyzed ester interchange with methyl palmitate and/or stearate. Hexane solutions of mixtures of fat and methyl ester(s) in various molar proportions were passed through a column of Lipozyme™, a lipase fromMucor miehei immobilized on a macroparticulate ion-exchange resin. The interesterified fats were purified by extraction with 95% ethanol followed by silica column chromatography. Interesterified dhupa, kokum and sal fats compared well with cocoa butter in the total fatty acid composition and the 2-position of triacylglycerols, as well as glyceride composition. In particular, interesterified kokum fat resembled cocoa butter well in solid fat content and peak melting temperature as determined by differential scanning calorimetry. IICT Communication No. 2743.  相似文献   

8.
Total oil content and the composition of fatty acids were analyzed in the acorns of 16 Quercus taxa from Turkey. The range of total fat varied between 0.7 and 7.4%. Oleic (10.2–54.4%), linoleic (24.2–49.1%), palmitic (13.4–30.4%), alpha linolenic (1.5–8.6%) and stearic acid (1.5–4.5%) were major fatty acids for all taxa. Significantly differences at section level were found (p < 0.05) for palmitic, stearic and oleic acid concentration. Saturated (17.0–38.6%), mono unsaturated (11.0–55.5%) and unsaturated fatty acids (57.4–81.6%) in total oil were also significantly different between section Quercus, Cerris and Ilex (p < 0.05). In addition, sectional differences were significant (p < 0.02) for the relative concentrations of saturated fatty acids compared to mono, poly and total unsaturated fatty acids. Considerable variation of individual fatty acid levels were observed in related species and varieties. The species from section Ilex Loudon exhibited the highest levels of saturated fatty acid while the lowest levels were found in Q. brantii, Q. libani and Q. trojana from section Cerris Loudon. These species also had the highest levels of unsaturated fatty acids. Whereas the lowest values were detected in the species of section Ilex. Both varieties of Q. cerris showed significant differences (p < 0.05) from the other species in section Cerris for all parameters, except for stearic acid and exhibited little variations among their individual populations. Different concentrations of fatty acids may be useful biochemical markers for the characterization of Quercus at the infrageneric level. Interesting ratios of linoleic:α-linolenic acid especially in Q. robur ssp. robur, Q. hartwissiana, Q. vulcanica, Q. ithaburensis ssp. macrolepis and Q. libani also were detected with respect to dietary reference for fatty acid intake.  相似文献   

9.
Purified triacylglycerols (TAG) fromPinus koraiensis andP. pinaster seed oils, which are interesting and commercially available sources of Δ5-olefinic acids (i.e.,cis-5,cis-9,cis-12 18:3 andcis-5,cis-11,cis-14 20:3 acids) were fractionated by reversed-phase high-performance liquid chromatography, and each fraction was examined by capillary gas-liquid chromatography for its fatty acid composition. A structure could be assigned to more than 92% of TAG from both oils. In both instances, ca. 48% of the TAG were shown to contain at least one δ5-olefinic acid. In the great majority of TAG, our data showed that there is only one molecule of δ5-olefinic acid per molecule of TAG. This is compatible with theoretical calculations based on the proportion of total δ5-olefinic in the oils. Thecis-5,cis-9,cis-12 18:3 acid (14.2 and 8.6% of total fatty acids in the seed oils ofP. koraiensis andP. pinaster, respectively) and thecis-5,cis-11,cis-14 20:3 acid (1.1 and 8.1% of total fatty acids in the seed oils ofP. koraiensis andP. pinaster, respectively) are preferentially associated with two molecules of linoleic acid, and to a lesser extent, to one molecule of linoleic acid and one molecule of oleic acid, or two oleic acid molecules. However, several other combinations occur, each in low amounts. The distribution of δ5-olefinic acids in TAG is evidently not random. Combining these results with the known preferential esterification of δ5-olefinic acids to the 1,3-positions of TAG would suggest that most of these acids are present at only one of these positions at a time.  相似文献   

10.
Coriander (Coriandrum sativum L.) seeds were harvested from the region of Korba (North-East Tunisia) in order to characterize their fatty acids, phytosterols, tocopherols and tocotrienols (tocols) profiles. Nine fatty acids, with petroselinic acid accounting for 76.6% of the total fatty acids, followed by linoleic, oleic and palmitic acids, accounting for 13.0, 5.4 and 3.4%, respectively, of the total fatty acids were identified. Neutral lipids (NLs) were mainly composed of triacylglycerols (98.4%). Polar lipids were mainly composed of phosphatidylcholine as the major phospholipid (PL) subclass, whereas digalactosyldiacylglycerol was the major galactolipid (GL). Total sterols content was estimated to be 36.93 mg/g oil. Stigmasterol accounted for 29.5% of the total sterols. Other representative sterols were β-sitosterol, Δ7-stigmasterol and Δ5, 24-stigmastadienol, which accounted for 24.8, 16.3 and 9.2%, respectively. Gamma-tocotrienol was the predominant tocol at 238.40 μg/g seed oil. This was equivalent to 72.8% of the total tocols followed by γ-tocopherol (8.06%) and α-tocopherol (7.6%).  相似文献   

11.
The triacylglycerols of winter butterfat were fractionated according to the type and degree of unsaturation into six fractions by silver ion high-performance liquid chromatography (Ag-HPLC). The acyl carbon number distribution of the triacylglycerols in each fraction was elucidated by reversed-phase HPLC and mass spectrometry (MS). The MS analysis of each fraction gave deprotonated triacylglycerol [M - H] ions which were produced by chemical ionization with ammonia. The daughter spectrum of each of the [M - H] ions provided information on its fatty acid constituents. Successful fractionation of triacylglycerols differing in the configuration of one fatty acyl residue by Ag-HPLC was important because geometrical isomers could not be distinguished by the MS system used. In addition to the fatty acid compositions, reversed-phase HPLC analysis demonstrated the purity of the collected fractions: molecules having acis-trans difference were separated nearly to the baseline. Triacylglycerols differing in the configuration of one fatty acyl residue were not equally distributed in relation to their acyl carbon numbers. This indicates that during the biosynthesis of triacylglycerols,cis- andtrans-fatty acids are processed differently. Although the fatty acid compositions of the corresponding molecular weight species of disaturatedtrans- and disaturatedcis-monoenoic triacylglycerols were similar, there may be differences in the amounts of different fatty acid combinations or in the distribution of fatty acids between the primary and secondary glycerol positions. In addition to the main components, it was possible to analyze minor triacylglycerols, such as molecules containing one odd-chain fatty acid, by the MS system used.  相似文献   

12.
A preliminary investigation of the bulk properties of the oil from the edible mophane caterpillar (phane), Imbrasia belina, showed a significant difference in the iodine values of the oils from mature and young phane. Detailed analysis of the fatty acid composition of the two oil samples was thus carried out by capillary gas chromatography (GC) and complemented with 1H and 13C nuclear magnetic resonance (NMR) studies to investigate the degree of unstauration in the two oil samples. While these studies showed that the oil samples from the mature and young mophane caterpillar were much the same in fatty acid composition, the data revealed a significant divergence from a literature report on phane oil. This earlier report puts the ratio of total saturated to total unsaturated fatty acids at approximately 1:1 (48.2:48.8, in percentages) and estimates the fatty acid composition for the major fatty acids as 16:0 (31.9%), 18:0 (15.2%), 18:1 (20.4%), 18:2 (9.9%), and 18:3 (19%). The data collected from the present work, however, showed the fatty acid composition for total saturated and total unsaturated fatty acids to be 40.5 and 57.0%, respectively. This work estimated the fatty acid composition for the major fatty acids as 16:0 (27.2%), 18:0 (12.3%), 18:1 (16.1%), 18.2 (10.7%), and 18:3 (29.0%). Thus, linolenic acid was the most abundant fatty acid in the phane oil. The GC results of the present analysis were largely corroborated by studies of the composition of fatty acid classes in the phane oil estimated from integrals of 1H and 13C NMR signals. Oils from other edible Lepidoptera larvae are also known to be much richer in unsaturated than saturated fatty acids.  相似文献   

13.
Liver lipids and fatty acids of the sting ray Dasyatis bleekeri (Blyth)   总被引:2,自引:0,他引:2  
The sting ray, Dasyatis bleekeri (Blyth), has been studied for lipids and fatty acids of its liver. The neutral lipids identified were hydrocarbons, wax esters, steryl esters, 1-O-alkyl-2,3-diacylglycerols, triacylglycerols, and sterols. Neutral lipids were predominant (91.8%), major components being triacylglycerols (92.7%). Polyenoic fatty acids of n-3 series, viz. eicosapentaenoic acid and docosahexaenoic acid, were high in the phospholipid and neutral lipid fractions. Cholesterol was the major component (67.9%) in the steryl ester fraction. Glyceryl ethers, with chainlengths up to 30 carbons, were recorded with unsaturated, anteiso, iso, and normal chains. In wax ester alcohols, up to 32-carbon chains were recorded. Hydrocarbons were up to 36-carbon chains with anteiso, iso, and normal chains. Among branched chain hydrocarbons, pristane was the major component (6.7%) and squalene was present at the level of 3.5%. Chimyl and batyl alcohol backbones were the major components found in 1-O-alkyl-diacylglycerols.  相似文献   

14.
A blend of rapeseed and butter oil was transesterified using immobilized Thermomyces lanuginosus lipase (Lipozyme® TL IM) as catalyst. The reaction was followed by reversed-phase HPLC and the triacylglycerol peaks were tentatively identified from their elution times by calculating equivalent carbon numbers. Further identification was made using HPLC-electrospray tandem mass spectrometry. A few of the triacylglycerols detected were typical combinations of fatty acids originating from rapeseed oil, such as α-linolenic acid, and short-chain fatty acids from butter oil. Due to the regioselectivity of the lipase, the transesterification reaction involved mainly fatty acids in the sn-1 and sn-3 positions. However, significant changes in the fatty acid composition in the sn-2 position were detected after 6 h.  相似文献   

15.
Singh  Sheo S.  Nee  Thomas Y.  Pollard  Michael R. 《Lipids》1986,21(2):143-149
Cuphea seeds contain large amounts of medium chain (C8 to C14) fatty acids, mainly as triacylglycerols. The biosynthesis of these lipids was studied in vivo by incubating developingCuphea lutea seeds with labeled acetate. Incorporation of label into triacylglycerols and into medium chain fatty acids occurred principally during the period of endogenous lipid deposition, but some label was encountered in these products even during seed dehydration. At this later stage palmitate and oleate were the dominant labeled fatty acids. During the period of rapid endogenous lipid deposition acyl lipids other than triacylglycerols were minor labeled components. The labeling patterns were consistent with the Kennedy pathway for triacylglycerol biosynthesis. The fatty acid composition of the acyl-CoA pool was similar to the total lipid fatty acid composition, but the acyl-ACP pool contained relatively more short chain acyl groups. Squalene was labeled from acetate throughout the period of seed development, but labeled sterols were not detected. Using [2-14C]mevalonic acid lactone as substrate, squalene was the principal labeled product. Small amounts of label were found in free sterols. However, in terms of mass, free sterol dominated over squalene. The possibility of two independent sites of isoprenoid biosynthesis in the developing embryo is discussed.  相似文献   

16.
An attenuated total reflection infrared spectroscopy procedure was collaboratively studied among two sets of five laboratories for quantitating the total trans fatty acid levels in neat (without solvent) hydrogenated vegetable oils, measured as triacylglycerols in one study, and as fatty acid methyl ester derivatives in the other. Unlike the fatty acid methyl esters, the triacylglycerols required no derivatization but had to be melted prior to measurement. To obtain a symmetric absorption band at 966 cm−1 on a horizontal background, the single-beam spectrum of the trans-containing fat was "ratioed" against that of a refined oil or a reference material that contained only cis double bonds. A single-bounce horizontal attenuated total reflection cell that requires 50 μL of undiluted test samples was used for oils, melted fats, or their methyl esters. For fatty acid methyl esters, the reproducibility relative standard deviations were in the range of 0.9 to 18.46% for 39.08 to 3.41% trans, determined as methyl elaidate per total fatty acid methyl esters. For five pairs of triacylglycerol blind duplicates, the reproducibility and repeatability relative standard deviations were in the ranges of 1.62 to 18.97%, and 1.52 to 13.26%, respectively, for 39.12 to 1.95% trans, determined as trielaidin per total triacylglycerols. Six pairs of spiked triacylglycerol blind duplicates (quality assurance standards) exhibited high accuracy in the range of 0.53 to 40.69% trans and averaged a low bias of 1.3%. These statistical analysis results were compared to those collaboratively obtained by the recently adopted AOCS Cd14-95 and AOAC 994.34 Infrared Official Methods.  相似文献   

17.
K. Staphylakis  D. Gegiou 《Lipids》1985,20(11):723-728
Sterol lipids of cocoa butter (cocoa beansLome Tongo) were fractionated into free sterols, steryl esters (SE), steryl glucosides and acylated steryl glucosides (ASG). 4-Desmethyl, 4-methyl and 4,4′-dimethyl sterols or triterpene alcohols, which were isolated as free sterols or which resulted from hydrolysis, were determined by thin layer chromatography-flame ionization detection and identified by gas chromatography and combined gas chromatography-mass spectroscopy. Free sterols comprise the main sterol fraction in cocoa butter. Esterified sterols amount to 11.5% of total sterols and glucosidic sterols to 16.3%. Fatty acids and D-glucose from hydrolysis of esters and glucosides were analyzed. The fatty acids of SE and ASG are richer in unsaturated fatty acids than cocoa butter total fatty acids.  相似文献   

18.
Carballeira NM  Oyola D  Vicente J  Rodriguez AD 《Lipids》2007,42(11):1047-1053
The phospholipid fatty acid composition of the Caribbean sponge Erylus goffrilleri is described for the first time. A total of 70 fatty acids with chain lengths between 13 and 29 carbons were identified in the sponge. Methyl-branched fatty acids predominated in E. goffrilleri suggesting the presence of a considerable number of bacterial symbionts. The novel fatty acids (5Z,9Z)-2-methoxy-5,9-hexadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-octadecadienoic acid, (5Z,9Z)-2-methoxy-5,9-nonadecadienoic acid, and (5Z,9Z)-2-methoxy-5,9-eicosadienoic acid are described for the first time in the literature. In addition, the iso-methyl-branched fatty acids (9Z)-2-methoxy-15-methyl-9-hexadecenoic acid and (5Z,9Z)-2-methoxy-15-methyl-5,9-hexadecadienoic acid, also identified in E. goffrilleri, were identified for the first time in nature. Based on the identified metabolites it is proposed that the unprecedented biosynthetic sequence: i-17:1Δ9 → 2-OMe-i-17:1Δ9 → 2-OMe-i-17:2Δ5,9 might be responsible for the biosynthesis of the novel iso-α-methoxylated fatty acids in E. goffrilleri.  相似文献   

19.
Twelve commercial samples of French butter, purchased in October–November, and 12 other samples, purchased in May–June, were analyzed with particular attention to theirtrans-octadecenoic acid contents. The isomeric fatty acids were quantitated by a combination of gas-liquid chromatography (GLC) of total fatty acids as isopropyl esters on a polar capillary column (CPSil 88) and of silver nitrate-impregnated thin-layer chromatography followed by GLC of the pooled saturated (used as internal standards) andtrans-octadecenoic acid fractions. Autumn butters contained 3.22±0.44%trans-octadecenoic acids (relative to total fatty acids), whereas those collected during the spring contained 4.28±0.47% (P<0.01). Minimum and maximum values for the two sets of butters were 2.46 (autumn) and 5.10% (spring), respectively. The annual mean value for thetrans-octadecenoic acid content in all butter samples was 3.8% of total fatty acids (ca. 2% for thetrans-11 18∶1 acid). This value allows calculation of the daily individual intake oftrans-octadecenoic acids from dairy products by populations of member states of the European Economic Community (EEC). It varies from 0.57 g (Portugal) to 1.66 g (Denmark). The mean value for the twelve countries of the EEC is 1.16 g/person/d, which is close to data published for the United States. In France, the consumption oftrans octadecenoic acids from dairy fat is higher than that from margarines (ca. 1.5 vs. 1.1 g/person/d).  相似文献   

20.
Lipid composition of perilla seed   总被引:3,自引:0,他引:3  
The composition of lipids and oil characteristics from perilla [Perilla frutescens (L.) Britt.] seed cultivars are reported. Total lipid contents of the five perilla seed cultivars ranged from 38.6 to 47.8% on a dry weight basis. The lipids consisted of 91.2–93.9% neutral lipids, 3.9–5.8% glycolipids and 2.0–3.0% phospholipids. Neutral lipids consisted mostly of triacylglycerols (88.1–91.0%) and small amounts of sterol esters, hydrocarbons, free fatty acids, free sterols and partial glycerides. Among the glycolipids, esterified sterylglycoside (48.9–53.2%) and sterylglycoside (22.1–25.4%) were the most abundant, while monogalactosyldiacylglycerol and digalactosyldiacylglycerol were present as minor components. Of the phospholipids, phosphatidylethanolamine (50.4–57.1%) and phosphatidylcholines (17.6–20.6%) were the major components, and phosphatidic acid, lysophosphatidylcholine, phosphatidylserine and phosphatidylinositol were present in small quantities. The major fatty acids of the perilla oil were linolenic (61.1–64.0%), linoleic (14.3–17.0%) and oleic acids (13.2–14.9%). Some of the physicochemical characteristics and the tocopherol composition of perilla oil were determined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号