首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Hepatocyte growth factor/scatter factor (HGF/SF) treatment of the Madin-Darby canine kidney epithelial cell line causes scattering of cells grown in monolayer culture and the formation of branching tubules by cells grown in collagen gels. HGF/SF causes prolonged activation of both the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase 2 (ERK2) and the phosphoinositide 3-OH kinase (PI 3-kinase) target protein kinase B (PKB)/Akt; inhibition of either the MAP kinase pathway by the MAP kinase/ERK kinase inhibitor PD98059 or the PI 3-kinase pathway by LY294002 blocks HGF/SF induction of scattering, although in morphologically distinct ways. Expression of constitutively activated PI 3-kinase, Ras, or R-Ras will cause scattering, but activated Raf will not, indicating that activation of the MAP kinase pathway is not sufficient for this response. Downstream of PI 3-kinase, activated PKB/Akt and Rac are both unable to induce scattering, implicating a novel pathway. Scattering induced by Ras or PI 3-kinase is sensitive to PD98059, as well as to LY294002, suggesting that basal MAP kinase activity is required, but not sufficient, for the scattering response. Induction of MDCK cell tubulogenesis in collagen gels by HGF/SF is inhibited by PD98059; expression of activated Ras and Raf causes disorganized growth in this system, but activated PI 3-kinase or R-Ras causes branching tubule formation similar to that seen with HGF/SF treatment. These data indicate that multiple signaling pathways acting downstream of Met and Ras are needed for these morphological effects; scattering is induced primarily by the PI 3-kinase pathway, which acts through effectors other than PKB/Akt or Rac and requires at least basal MAP kinase function. Elevated PI 3-kinase activity induces tubulogenesis, but total inhibition and excess activation of the MAP kinase pathway both oppose this effect.  相似文献   

7.
Serum response element binding protein (SRE BP) is a novel binding factor present in nuclear extracts of avian and NIH 3T3 fibroblasts which specifically binds to the cfos SRE within a region overlapping and immediately 3' to the CArG box. Site-directed mutagenesis combined with transfection experiments in NIH 3T3 cells showed that binding of both serum response factor (SRF) and SRE BP is necessary for maximal serum induction of the SRE. In this study, we have combined size fractionation of the SRE BP DNA binding activity with C/EBPbeta antibodies to demonstrate that homodimers and heterodimers of p35C/EBPbeta (a transactivator) and p20C/EBPbeta (a repressor) contribute to the SRE BP complex in NIH 3T3 cells. Transactivation of the SRE by p35C/EBPbeta is dependent on SRF binding but not ternary complex factor (TCF) formation. Both p35C/EBPbeta and p20C/EBPbeta bind to SRF in vitro via a carboxy-terminal domain that probably does not include the leucine zipper. Moreover, SRE mutants which retain responsiveness to the TCF-independent signaling pathway bind SRE BP in vitro with affinities that are nearly identical to that of the wild-type SRE, whereas mutant SRE.M, which is not responsive to the TCF-independent pathway, has a nearly 10-fold lower affinity for SRE BP. We propose that C/EBPbeta may play a role in conjunction with SRF in the TCF-independent signaling pathway for SRE activation.  相似文献   

8.
9.
10.
Cultured mesangial cells constitutively express alpha-smooth muscle actin (alpha-SMA), a marker of cellular activation. We unexpectedly found that tyrosine kinase pp60v-src, a known activator for a wide range of signalling cascades, suppressed the alpha-SMA expression in mesangial cells. The present study was conducted to elucidate molecular events involved in this phenomenon. Transfection with a reporter plasmid revealed that the serum response element (SRE), the cis-element required for alpha-SMA expression, was constitutively active in mesangial cells. When mesangial cells were transfected with pp60v-src, activity of both SRE and the alpha-SMA promoter was down-regulated. This was associated with depressed levels of phosphorylated extracellular signal-regulated kinases (ERKs), but not c-Jun N-terminal kinase. Selective inhibition of ERKs by PD098059 abrogated constitutive SRE activity, leading to suppressed alpha-SMA expression. These results uncovered a novel potential of pp60v-src for suppression of alpha-SMA via intervention in the ERK-SRE signalling pathway.  相似文献   

11.
12.
Insulin-like growth factor-I (IGF-I) induces neuronal differentiation in vitro. In the present study, we examined the signaling pathway underlying IGF-I-mediated neurite outgrowth. In SH-SY5Y human neuroblastoma cells, treatment with IGF-I induced concentration- and time-dependent tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and extracellular signal-regulated protein kinases (ERK) 1 and 2. These effects of IGF-I were blocked by a neutralizing antibody against IGF-IR. Whereas IGF-IR phosphorylation was observed within 1 min, maximal phosphorylation of ERKs was not reached for 30 min. Both IGF-IR and ERK phosphorylation were maintained for at least 24 h. Also, the concentration dependence of IGF-I-stimulated IGF-IR and ERK tyrosine phosphorylation paralleled that of IGF-I-mediated neurite outgrowth. We further examined the role of mitogen-activated protein kinase activation in IGF-I-stimulated neuronal differentiation using the mitogen-activated protein kinase/ERK kinase inhibitor PD98059. Whereas PD98059 had no effect on IGF-IR phosphorylation, PD98059 reduced IGF-I-mediated ERK tyrosine phosphorylation and ERK phosphorylation of the substrate Elk-1. PD98059 also produced a parallel reduction of IGF-I-stimulated neurite outgrowth. Finally, consistent with its ability to block neuronal differentiation, PD98059 inhibited IGF-I-dependent changes of GAP-43 and c-myc gene expression. Together these results suggest that activation of ERKs is essential for IGF-I-stimulated neuronal differentiation.  相似文献   

13.
We have demonstrated that extracellular signal-regulated kinases (ERKs) and cyclin D1 are required for bovine tracheal myocyte DNA synthesis. We hypothesized that catalytic activation by ERKs may regulate cyclin D1 expression in these cells. To test this hypothesis, we examined the effects of two inhibitors of ERKs and two reagents that increase the level of activated ERKs on cyclin D1 protein abundance and promoter activity. ERK activity was inhibited either by PD98059, a synthetic inhibitor of mitogen-activated protein kinase (MAPK)/ERK kinase (MEK), the upstream signaling intermediate required and sufficient for ERK activation, or by transient transfection with a dominant-negative mutant of MEK1 (MEK-2A). The level of activated ERKs was increased by transient transfection with either a constitutively active form of MEK1 (MEK-2E) or wild-type ERK2 (MAPKwt). Cyclin D1 expression was assessed either by immunoblot or cotransfection with the full-length cyclin D1 promoter subcloned into a luciferase reporter. We found that pretreatment of bovine tracheal myocytes with PD98059 significantly attenuated platelet- derived growth factor (PDGF)-induced cyclin D1 protein abundance. Furthermore, transfection with MEK-2A reduced PDGF-induced cyclin D1 promoter activity. Finally, transfection with either MEK-2E or MAPKwt induced cyclin D1 promoter activity in the absence of growth factor treatment. We conclude that catalytic activation of ERKs regulates cyclin D1 expression in airway smooth-muscle cells.  相似文献   

14.
15.
Cultured macrophages exhibit spreading in response to external stimuli. It is relevant to in vivo morphologic changes of macrophages during extravasation, migration, and differentiation. The present study was performed to elucidate molecular mechanisms that regulate spreading of macrophages. Redox is a crucial factor that modulates a wide range of cell function. We found that macrophages undergo spreading in response to oxidant stress caused by hydrogen peroxide or an oxidant generating agent menadione. To identify signaling pathways involved, a role of mitogen-activated protein (MAP) kinases was investigated. Western blot analysis showed that treatment of macrophages with menadione rapidly induced phosphorylation of extracellular signal-regulated kinases (ERK1, ERK2) and p38 MAP kinase, but not c-Jun N-terminal kinase (JNK). Pharmacologic inhibition of either ERK or p38 activation blunted the macrophage spreading. Similarly, transfection with dominant-negative mutants of ERKs or a mutant p38 significantly suppressed the oxidant-triggered spreading. ERKs and p38 are known to activate serum response element (SRE) via phosphorylation of the ternary complex factor Elk-1. To further identify downstream events, we focused on a role of SRE. Stimulation of macrophages with menadione induced activation of SRE. Intervention in the SRE activation by a dominant-negative mutant of Elk-1 inhibited the menadione-induced spreading. These results suggest that oxygen radical metabolites, the well-known mediators for tissue injury, incite spreading of macrophages via the MAP kinase-SRE signaling pathways.  相似文献   

16.
The mitogen-activated protein kinase (MAP kinase) pathway is thought to play an important role in the actions of neurotrophins. A small molecule inhibitor of the upstream kinase activator of MAP kinase, MAP kinase kinase (MEK) was examined for its effect on the cellular action of nerve growth factor (NGF) in PC-12 pheochromocytoma cells. PD98059 selectively blocks the activity of MEK, inhibiting both the phosphorylation and activation of MAP kinases in vitro. Pretreatment of PC-12 cells with the compound completely blocked the 4-fold increase in MAP kinase activity produced by NGF. Half-maximal inhibition was observed at 2 microM PD98059, with maximal effects at 10-100 microM. The tyrosine phosphorylation of immunoprecipitated MAP kinase was also completely blocked by the compound. In contrast, the compound was without effect on NGF-dependent tyrosine phosphorylation of the pp140trk receptor or its substrate Shc and did not block NGF-dependent activation of phosphatidylinositol 3'-kinase. However, PD98059 completely blocked NGF-induced neurite formation in these cells without altering cell viability. These data indicate that the MAP kinase pathway is absolutely required for NGF-induced neuronal differentiation in PC-12 cells.  相似文献   

17.
18.
Kinases mediating phosphorylation and activation of cytosolic phospholipase A2 (cPLA2) in intact cells remain to be fully characterized. Platelet-activating factor stimulation of human neutrophils increases cPLA2 phosphorylation. This increase is inhibited by PD 98059, a mitogen-activated protein (MAP)/extracellular signal-regulating kinase (erk) 1 inhibitor, but not by SB 203580, a p38 MAP kinase inhibitor, indicating that this action is mediated through activation of the p42 MAP kinase (erk2). However, platelet-activating factor-induced arachidonic acid release is inhibited by both PD 98059 and SB 203580. Stimulation by TNF-alpha increases cPLA2 phosphorylation, which is inhibited by SB 203580, but not PD 98059, suggesting a role for p38 MAP kinase. LPS increases cPLA2 phosphorylation and arachidonic acid release. However, neither of these actions is inhibited by either PD 98059 or SB 203580. PMA increases cPLA2 phosphorylation. This action is inhibited by PD 98059 but not SB 203580. Finally, FMLP increases cPLA2 phosphorylation and arachidonic acid release. Interestingly, while the FMLP-induced phosphorylation of cPLA2 is not affected by the inhibitors of the p38 MAP kinase or erk cascades, both inhibitors significantly decrease arachidonic acid release stimulated by FMLP. SB 203580 or PD 98059 has no inhibitory effects on the activity of coenzyme A-independent transacylase.  相似文献   

19.
20.
Activation of the mitogen-activated protein (MAP) kinase pathway has been associated with both cell proliferation and differentiation. Constitutively activated forms of Mek (MAP kinase/Erk kinase) and Erk (MAP kinase) have been previously shown capable of inducing differentiation or proliferation in nonhematopoietic cells. To specifically examine the role of Erk activation in megakaryocytic growth and development, we activated the MAP kinase pathway by the transfection of constitutively activated Mek or Erk cDNA into a human megakaryoblastic cell line, CMK, by electroporation. The CMK transfectant clones that expressed constitutively activated Mek or Erk showed morphologic changes of differentiation. Transfected cells also showed expression of mature megakaryocytic cell surface markers. The MAP kinase pathway was also activated by treatment of the hematopoietic cells with a cytokine that activates Erk. The treatment of CMK cells with stem cell factor (SCF ) caused MAP kinase activation and induced differentiation by the expression of mature megakaryocytic cell surface markers. The effects of the SCF treatment were inhibited by pretreatment with a specific inhibitor of the MAP kinase pathway, PD98059. In this report, we conclude that activation of the MAP kinase pathway was both necessary and sufficient to induce differentiation in this megakaryoblastic cell line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号