首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Specific extracellular matrix molecules and growth factors (GFs) with angiogenic properties could be combined with biomaterials to enhance angiogenesis and subsequently tissue ingrowth through the wall of the porous structure. In this study, composite fibrin matrices containing hyaluronic acid (HA), fibronectin (FN) and/or fibroblast growth factor-1 (FGF-1), FGF-2 and an endothelial cell growth supplement (ECGS) were adsorbed onto Dacron meshes which were then implanted subcutaneously in mice. The release from the implants and the tissue distribution of implanted GFs were determined in vivo using radiolabelled FGF-2. Angiogenesis was quantified by counting the number of capillaries present in each Dacron histological serial section. Radiolabelled GF was rapidly released from matrices and was absent from them by day 28. A very low percentage of the implanted radiolabelled GFs was found in the kidneys and livers of the animals. The number of microvessels formed within fibrin-impregnated samples was increased in the presence of HA and ECGS at 14 d and of FN and ECGS or FGF-2 at 28 d. FGF-1 had no direct effect on angiogenesis in our model. These results indicate that enhancement of vascularization within prosthesis mesh may be achieved by using fibrin as a support for angiogenic molecules such as HA, FN and FGFs.  相似文献   

2.
Culture of endothelial cell is gotten from human umbilical cord by enzymatic digestion. For the growth of cells in culture, medial RPMI 1640 with 20% mixed human serum (NHS) or 20% fetal calf serum (FCS), endothelial cell growth factor (ECGF) and heparin have been used. Plastic, 0.1% gelatin and fibronectin have been used as a fundament. Immune identification of endothelial cells was culture is performed by monoclonal antibodies on vWF:Ag. Homogeneous cell line in culture might be used as in vitro model in both experimental and practice work.  相似文献   

3.
Integrins are heterodimeric cell adhesion receptors. The beta 1 integrin subunit can be in a complex with multiple a subunits and form receptors for collagen, laminin, fibronectin, and vitronectin. We have characterized the distribution of eight integrin subunits in rheumatoid synovium, with special interest in the lining cell layer. The beta 1 integrin subunit was found in abundance in synovial stroma and in lining cells. The only alpha subunit seen constantly in lining cells was alpha 6. In complex with alpha beta subunit, alpha 6 forms a laminin receptor usually seen in epithelial or endothelial cells or in macrophages. The fact that laminin was found in the extracellular matrix around synovial cells suggests the importance of alpha 6 integrin in the adhesion of synovial lining cells. Furthermore, alpha 6 expression was noticeably weaker in strongly proliferative lining cell layers, indicating that the inflammatory process may regulate integrin expression. A potential connection between altered expression of cell adhesion receptors and the pathological behavior of rheumatoid lining cells is suggested.  相似文献   

4.
Morphofunctional study of umbilical cords from pregnancies complicated by preeclampsia shows both activation and lesion of endothelium. The cellular findings in umbilical cords from pregnancies complicated by preeclampsia can be summarized as: (i) higher number of cells with secretion bladders and increase in the number and size of both secretion bladders and microvilli-like protrusions; (ii) increase in collagen, fibrin, fibronectin and lipidic vesicles in the vessel wall; (iii) vacuolization of endothelial cells; (iv) presence of lipidic vacuoles and lipophages in the vessel wall; (v) erosion and disorganisation of the endothelium that exposes extracellular proteins to the blood flow. Endothelial cell cultures from preeclamptic pregnancies show kinetic disorders and cell detachment. The results confirm that an endothelial cell lesion occurs in preeclampsia and this cellular disorder can be reproduced in vitro.  相似文献   

5.
Vascular endothelial cells are important in a variety of physiological and pathophysiological processes. The growth and functions of vascular endothelial cells are regulated both by soluble mitogenic and differentiation factors and by interactions with the extracellular matrix; however, relatively little is known about the role of the matrix. In the present study, we investigate whether integrin-mediated anchorage to a substratum coated with the extracellular matrix protein fibronectin regulates growth factor signaling events in human endothelial cells. We show that cell adhesion to fibronectin and growth factor stimulation trigger distinct initial tyrosine phosphorylation events in endothelial cells. Thus, integrin-dependent adhesion of endothelial cells leads to tyrosine phosphorylation of both focal adhesion kinase and paxillin, but not of several growth factor receptors. Conversely, EGF stimulation causes receptor autophosphorylation, with no effect on focal adhesion kinase or paxillin tyrosine phosphorylation. Adhesion to fibronectin, in the absence of growth factors, leads to activation of MAPK. In addition, adhesion to fibronectin also potentiates growth factor signaling to MAPK. Thus, polypeptide growth factor activation of MAPK in anchored cells is far more effective than in cells maintained in suspension. Other agonists known to activate MAPK were also examined for their ability to activate MAPK in an anchorage-dependent manner. The neuropeptide bombesin, the bioactive lipid lysophosphatidic acid (LPA), and the cytokine tumor necrosis factor alpha, which signal through diverse mechanisms, were all able to activate MAPK to a much greater degree in fibronectin-adherent cells than in suspended cells. In addition, tumor necrosis factor alpha activation of c-Jun kinase (JNK) was also much more robust in anchored cells. Together, these data suggest a cooperation between integrins and soluble mitogens in efficient propagation of signals to downstream kinases. This cooperation may contribute to anchorage dependence of mitogenic cell cycle progression.  相似文献   

6.
Complexing of fibronectin glycosaminoglycans and collagen   总被引:5,自引:0,他引:5  
Collagen-fibronectin complexes, formed by binding of fibronectin to gelatin or collagen insolubilized on Sepharose, were found to bind 20-40% of radioactivity in [35S]heparin. Fibronectin attached directly to Sepharose also bound [35S]heparin, while gelatin-Sepharose without fibronectin did not. Unlabeled heparin and highly sulfated heparan sulfate efficiently inhibited the binding of [35S]heparin, hyaluronic acid and dermatan sulfate were slightly inhibitory, while chondroitin sulfates and heparan sulfate with a low sulfate content did not inhibit. The interaction of heparin with fibronectin bound to gelatin resulted in complexes which required higher concentrations of urea to dissociate than complexes of fibronectin and gelatin alone. Heparin as well as highly sulfate heparan sulfate and hyaluronic acid brought about agglutination of plastic beads coated with gelatin when fibronectin was present. Neither fibronectin nor glycosaminoglycans alone agglutinated the beads. It is proposed that the multiple interactions of fibronectin, collagen and glycosaminoglycans revealed in these assays could play a role in the deposition of these substances as an insoluble extracellular matrix. Alterations of the quality or quantity of any one of these components could have important effects on cell surface interactions, including the lack of cell surface fibronectin in malignant cells.  相似文献   

7.
We have recently shown that during angiogenesis in situ, sprouting and newly formed capillaries appear to be composed of two cell types, endothelial cells and nonendothelial, pericyte-like cells. The effect of pericytes on the process of neovessel formation is largely unknown. To study the influence of nonendothelial cell types on endothelial tubule formation, we have performed coculture experiments in a fibrin-clot angiogenesis system. When seeded below a critical density on the surface of fibrin gels, endothelial cells (from macro- or microvascular origin) did not show spontaneous formation of sprouts. However, in superconfluent cell cultures or after stimulation of endothelial cells with basic fibroblast growth factor (bFGF), endothelial cells frequently acquired an elongated shape. By stimulation of endothelial cells with both bFGF and vascular endothelial growth factor (VEGF), development of short capillary-like structures was induced. When endothelial cells were cocultivated with a cell type of high fibrinolytic potential, i.e., fibroblasts, development of capillary-like formations could not be detected. Cocultivation of endothelial cells with vascular smooth muscle cells or with retinal pericytes also did not increase the number of capillary-like formations in fibrin gels. In contrast, vascular smooth muscle cells on their own could be demonstrated to give rise to branched capillary-like networks in fibrin, which easily could be mistaken for true capillaries. Our results indicate that periendothelial cells contribute to angiogenesis not only by fibrinolysis and proteolytic permeation of the extracellular matrix. Rather, the interactions of endothelial cells and pericyte-like cells, as frequently observed during neovessel formation in situ, appear to be more specific and may require factors hitherto unknown.  相似文献   

8.
In the living organism, capillary growth frequently occurs in a fibrin-rich extracellular matrix. The structure and the mechanical properties of fibrin clots are influenced by various macromolecules (i.e., hyaluronic acid and thrombospondin) and also by pH, ionic strength, and thrombin concentrations of the milieu in which they polymerize. The configuration (three-dimensional architecture) and the rigidity of fibrin clots correlate with their opacity measured by spectrophotometric absorbance readings at 350 nm. By using bovine pulmonary artery endothelial cells and bovine fibrinogen, we show here that transparent fibrin clots (A(350) < 1.0), polymerized at > or = pH 7.5 or in the presence of increased thrombin or sodium chloride concentrations, strongly stimulated capillary morphogenesis in vitro. In contrast, opaque fibrin gels (A(350) > 1.5), polymerized at pH 7.2 or in the presence of dextran, stimulated only the migration of endothelial cells but not capillary morphogenesis. We demonstrate that the angiomorphogenic effects of basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) are strongly dependent on the structure of the fibrin clots. Our findings suggest that bFGF/VEGF primarily stimulate the proliferation of endothelial cells, whereas the three-dimensional architecture of the fibrin matrix is decisive for capillary morphogenesis.  相似文献   

9.
Capillary morphogenesis involves cell-cell and cell-matrix interactions. Proteases elaborated by capillary cells modify the extracellular matrix (ECM) to facilitate capillary tube formation. Previously, we detected the presence of fibronectin fragments (Fn-f) associated with the proform of matrix metalloprotease-2 (MMP-2) in conditioned medium of human retinal endothelial cells (HRECs). Association of this fragment to latent MMP-2 prevented autocatalytic activation of MMP-2, suggesting a modulatory role of Fn-f in MMP-2 activation. In this report, we examined the potential role of Fn-f on two processes involved in angiogenesis, proliferation and migration of vascular cells. The effects of Fn-f on proliferation were determined by DNA synthesis and cell counts. Their effects on migration were assessed using modified Boyden chambers. Seven Fn-f were tested on vascular cell migration and/or proliferation. Three Fn-f induced migration. Fn-f of 30-kDa and 120-kDa size positively affected proliferation of microvascular cells but not macrovascular cells. A 45-kDa gelatin binding fragment of Fn inhibited HREC proliferation but stimulated pericyte and smooth muscle cell proliferation. The potency of these fragments exceeded that of the known angiogenic growth factor, basic fibroblast growth factor (bFGF), on HREC migration. ECM components such as fibronectin may influence capillary morphogenesis by the generation of fragments that can modulate proliferation, migration, and protease activation. In the setting of diabetes, excess Fn is generated and is available for degradation. Thus, the production of Fn-f may be specifically relevant to the angiogenesis observed in proliferative diabetic retinopathy.  相似文献   

10.
Anchorage-independent growth is a property of malignant cells. Extracellular matrix proteins are present in tumor spheroids but their function is not clearly defined. In this paper we show that a murine mammary carcinoma cell line, SP1, which expresses the fibronectin receptor alpha 5 beta 1 requires fibronectin for anchorage-independent growth in soft agar. Growth factors (hepatocyte growth factor and transforming growth factor-beta) also promote SP1 colony growth. In contrast, collagen types I and IV have an inhibitory effect on SP1 colony growth. A clone isolated from SP1 cells which expresses the collagen/laminin receptor alpha 2 beta 1 as well as the fibronectin receptor alpha 5 beta 1, demonstrates increased colony formation in the presence of fibronectin and collagen. These data suggest a role for both the alpha 5 beta 1 and alpha 2 beta 1 integrin receptors in the regulation of anchorage-independent growth of mammary carcinoma cells.  相似文献   

11.
PURPOSE: Hematopoietic growth factor(s) (GF) may exert positive effects in vitro or in vivo on the survival of hematopoietic stem and progenitor cells after accidental or therapeutic total body irradiation. METHODS AND MATERIALS: We studied the clonogenic survival and DNA repair of irradiated (0.36, 0.73, and 1.46 Gy) CD34+ cord blood (CB) cells after short-term incubation (24 h) with GFs. CD34+ cells were stimulated with basic fibroblast growth factor (bFGF), stem cell factor/c-kit ligand (SCF), interleukin-3 (IL-3), IL-6, leukemia inhibitory factor (LIF), and granulocyte-monocyte colony stimulating factor (GM-CSF) alone or in combination in short-term serum-free liquid suspension cultures (LSC) immediately after irradiation and then assayed for clonogenic progenitors. DNA repair was evaluated by analysis of DNA strand breaks using the comet assay. Survival of CFU-GM, BFU-E, and CFU-Mix was determined and dose-response curves were fitted to the data. RESULTS: The radiobiological parameters (D[0] and n) showed significant GF(s) effects. Combination of IL-3 with IL-6, SCF or GM-CSF resulted in best survival for CFU-GM BFU-E and CFU-Mix, respectively. Combinations of three or more GFs did not increase the survival of clonogenic CD34+ cells compared to optimal two-factor combinations. The D[0] values for CFU-GM, BFU-E, and CFU-Mix ranged between 0.56-1.15, 0.41-2.24, and 0.56-1.29 Gy, respectively. As for controls, the curves remained strictly exponential, i.e., all survival curves were strictly exponential without any shoulder (extrapolation numbers n=1 for all tested GF(s). DNA repair capacity of CD34+ cells determined by comet assay, was measured before, immediately after irradiation, as well as 30 and 120 min after irradiation at 1 Gy. Notably, after irradiation the 2-h repair of cytokine-stimulated and unstimulated CD34+ cells was similar. CONCLUSION: Our data indicate that increased survival of irradiated CB CD34+ cells after short-term GF treatment is mediated through proliferative GF effects on the surviving fraction but not through improved DNA repair capacity.  相似文献   

12.
PURPOSE: Production of extracellular matrix (ECM) by corneal endothelial cells is related to physiologic functions and pathologic conditions and is regulated by many cytokines, including transforming growth factor-beta (TGF-beta). In this study, the molecular mechanism of ECM production regulation by TGF-beta was investigated in cultured corneal endothelial cells. METHODS: The production of ECM components (laminin and fibronectin) was detected in cultured corneal endothelial cells by western blot analysis. To determine the signal transduction pathways, mutant TGF-beta type I receptor (TbetaR-I) and/or Smad protein family members (intracellular signal transducers in TGF-beta signaling) were overexpressed by transfecting their cDNA into the cultured cells, and the effects on ECM production were observed. RESULTS: The production of laminin and fibronectin was stimulated by treatment with TGF-beta1 or TGF-beta2. After transient transfection of cDNA of the constitutively active (CA) mutant of TbetaR-I, the production of laminin and fibronectin was stimulated even in the absence of TGF-beta. The transfection of the dominant negative mutant of TbetaR-I counteracted the effects of TGF-beta. These results confirm that TGF-beta directly stimulates ECM production from corneal endothelial cells through TbetaR-I. The ECM production stimulation by TGF-beta or CA TbetaR-I was accelerated by the overexpression of Smad2, Smad3, and/or Smad4 and inhibited by that of Smad7. These results show that TGF-beta signals connected to ECM production are regulated by Smad family members, located downstream of TbetaR-I. CONCLUSIONS: The results of this study show that TGF-beta stimulates ECM production from corneal endothelial cells through TbetaR-I and Smad family transducers.  相似文献   

13.
We previously reported that a macrophage response that increased binding to 125I-radiolabeled soluble denatured collagen (gelatin) was induced by preincubation of macrophage with a 70-kDa amino-terminal fibronectin fragment and soluble nonlabeled gelatin [S. F. Penc, F. A. Blumenstock, J. E. Kaplan (1995) J. Leukoc. Biol. 58, 501-509]. We now report that neither protein synthesis nor recycling of receptors between the cell surface and interior were required for this response. However, removal of cell surface components with trypsin demonstrated that induced gelatin binding required native cell surface constituents. It was found that in the presence of the 70-kDa fibronectin fragment and gelatin, matrix metalloprotease-2 (MMP-2) and matrix metalloprotease-9 (MMP-9) activity in the cell layers was significantly decreased or undetectable, respectively. Similar levels of increased gelatin binding could be reproduced after inhibition of matrix-degrading metalloprotease activity with 1'10-phenanthroline. These results demonstrate that a macrophage specific response that decreased gelatinase activity and increased gelatin binding was initiated by interaction with a 70-kDa fibronectin fragment and gelatin.  相似文献   

14.
Remodeling of pulmonary capillaries occurs after chronic increases in capillary pressure (e.g., mitral stenosis). Also, remodeling of pulmonary arteries begins within 4 h of increased wall stress and is endothelium dependent. We have previously shown that high lung inflation increases wall stress in pulmonary capillaries. This study was designed to determine whether high lung inflation induces remodeling of the extracellular matrix (ECM) in lung parenchyma. Open-chest rabbits were ventilated for 4 h with 9-cmH2O positive end-expiratory pressure (PEEP) on one lung and 1-cmH2O PEEP on the other (High-PEEP group), or with 2-cmH2O PEEP on both lungs (Low-PEEP group). An additional untreated control group was also included. We found increased levels of mRNA in both lungs of High-PEEP rabbits (compared with both the Low-PEEP and untreated groups) for alpha1(III) and alpha2(IV) procollagen, fibronectin, basic fibroblast growth factor, and transforming growth factor-beta1. In contrast, alpha2(I) procollagen and vascular endothelial growth factor mRNA levels were not changed. We conclude that high lung inflation for 4 h increases mRNA levels of ECM components and growth factors in lung parenchyma.  相似文献   

15.
The decline of plasma fibronectin after surgery, trauma, and burn, as well as during severe sepsis after injury, appears to limit hepatic Kupffer cell phagocytic activity. Intravenous infusion of gelatin-coated particles to simulate blood-borne particulate collagenous tissue debris in the circulation after injury also depletes plasma fibronectin. We used soluble gelatin conjugated with 125I-labeled dilactitol tyramine (DLT-gelatin) as a model of soluble collagenous tissue debris. We studied its blood clearance as well as organ localization in normal and postburn rats. Fibronectin-deficient plasma harvested early after burn exhibited limited ability to support in vitro phagocytic uptake of the gelatinized microparticles by Kupffer cells in liver tissue from normal rats. However, Kupffer cells in liver tissue from normal and postburn rats phagocytized the test particles at a normal rate when incubated in normal plasma. The DLT-gelatin ligand bound to fibronectin in a dose-dependent manner as verified by its capture with anti-fibronectin coated plastic wells when coincubated with purified fibronectin. By gel filtration chromatography, the binding of fibronectin with the DLT-gelatin ligand was readily detected, resulting in the formation of a high-molecular-weight complex. In normal animals the plasma clearance and liver localization of 125I-DLT-gelatin was competitively inhibited by infusion of excess nonradioactive gelatin. The blood clearance and liver localization of the soluble gelatin ligand were also impaired after burn injury during periods of fibronectin deficiency similarly to the pattern observed with gelatin-coated microparticles. By autoradiography, the cellular site for the uptake of the 125I-DLT-gelatin was primarily but not exclusively hepatic Kupffer cells; 125I-DLT-asialofetuin and 125I-DLT-ovalbumin were removed by hepatocytes and sinusoidal endothelial cells, respectively. Thus, gelatin conjugated with 125I-DLT can be used to simulate blood-borne soluble collagenous tissue debris after burn. It rapidly binds to plasma fibronectin before its hepatic Kupffer cell removal, and its blood clearance is markedly delayed after burn injury during periods of plasma fibronectin deficiency.  相似文献   

16.
A reconstituted basement membrane (matrigel) and/or fibroblasts promote the growth of human breast tumors in athymic nude mice. We have investigated in vitro the effect of matrigel or purified glycoproteins (laminin and fibronectin) on tumoral MCF7 cells-fibroblasts interactions. In coculture on matrigel, MCF7 cells organized into clusters attached on top of fibroblasts aggregates. During the process resulting in tumor cells-fibroblasts aggregation, fibroblasts actively migrated while MCF7 cells were passively transported. Using purified proteins, specific antibodies and synthetic peptides, we show that cell aggregation induced by immobilized and soluble laminin is antagonized by exogenous fibronectin or fibronectin synthesized by fibroblasts.  相似文献   

17.
Vascular smooth muscle cell (VSMC) dysfunction plays a role in diabetic macrovasculopathy and this may include abnormalities in growth characteristics and the extracellular matrix. As the actual mechanisms by which glucose induces VSMC dysfunction remain unclear, the aim of this study was to assess the potential role of glucose-induced oxidative stress. Porcine aortic VSMCs were cultured for 10 days in either 5 mmol/l normal glucose or 25 mmol/l D-glucose (high glucose). There was evidence of oxidative stress as indicated by a 50% increase in intracellular malondialdehyde (p < 0.05), increased mRNA expression of CuZn superoxide dismutase and Mn superoxide dismutase (by 51% and 37% respectively, p < 0.01) and a 50% decrease in glutathione in 25 mmol/l D-glucose (p < 0.001). Growth was increased by 25.0% (p < 0.01). mRNA expression of extracellular matrix proteins (collagens I, III, IV and fibronectin) was not altered by high glucose in these experimental conditions. Repletion of glutathione with N-acetyl L-cysteine (1 mmol/l) in VSMC grown in high glucose was associated with reduction in malondialdehyde and restored growth to that of normal glucose. The water soluble analogue of vitamin E, Trolox (200 mumol/l), reduced malondialdehyde concentrations, but had no effect on glutathione depletion or the increased growth rate seen with high glucose. The addition of buthionine sulphoximine (10 mumol/l) to VSMC cultured in normal glucose reduced glutathione, increased malondialdehyde and increased growth to a similar extent as that found in high glucose alone. These results suggest that thiol status, rather than lipid peroxides, is a key factor in modulating VSMC growth and that mRNA expression of extracellular matrix proteins is not increased in VSMC under conditions of glucose-induced oxidative stress.  相似文献   

18.
The formation of microvascular sprouts during angiogenesis requires that endothelial cells move through an extracellular matrix. Endothelial cells that migrate in vitro generate forces of traction that compress (i.e., contract) and reorganize vicinial extracellular matrix, a process that might be important for angiogenic invasion and morphogenesis in vivo. To study potential relationships between traction and angiogenesis, we have measured the contraction of fibrillar type I collagen gels by endothelial cells in vitro. We found that the capacity of bovine aortic endothelial (BAE) cells to remodel type I collagen was similar to that of human dermal fibroblasts--a cell type that generates high levels of traction. Contraction of collagen by BAE cells was stimulated by fetal bovine serum, human plasma-derived serum, bovine serum albumin, and the angiogenic factors phorbol myristate acetate and basic fibroblast growth factor (bFGF). In contrast, fibronectin and immunoglobulin from bovine serum, several nonserum proteins, and polyvinyl pyrrolidone (a nonproteinaceous substitute for albumin in artificial plasma) were not stimulatory. Contraction of collagen by BAE cells was diminished by an inhibitor of metalloproteinases (1,10-phenanthroline) at concentrations that were not obviously cytotoxic. Zymography of proteins secreted by BAE cells that had contracted collagen gels revealed matrix metalloproteinase 2. Subconfluent BAE cells that were migratory and proliferating were more effective contractors of collagen than were quiescent, confluent cells of the same strain. Moreover, bovine capillary endothelial cells contracted collagen gels to a greater degree than was seen with BAE cells. Collectively, our observations indicate that traction-driven reorganization of fibrillar type I collagen by endothelial cells is sensitive to different mediators, some of which, e.g., bFGF, are known regulators of angiogenesis in vivo.  相似文献   

19.
Micropatterned surfaces for control of cell shape, position, and function   总被引:1,自引:0,他引:1  
The control of cell position and function is a fundamental focus in the development of applications ranging from cellular biosensors to tissue engineering. Using microcontact printing of self-assembled monolayers (SAMs) of alkanethiolates on gold, we manufactured substrates that contained micrometer-scale islands of extracellular matrix (ECM) separated by nonadhesive regions such that the pattern of islands determined the distribution and position of bovine and human endothelial cells. In addition, the size and geometry of the islands were shown to control cell shape. Traditional approaches to modulate cell shape, either by attaching suspended cells to microbeads of different sizes or by plating cells on substrates coated with different densities of ECM, suggested that cell shape may play an important role in control of apoptosis as well as growth. Data are presented which show how micropatterned substrates were used to definitively test this hypothesis. Progressively restricting bovine and human endothelial cell extension by culturing cells on smaller and smaller micropatterned adhesive islands regulated a transition from growth to apoptosis on a single continuum of cell spreading, thus confirming the central role of cell shape in cell function. The micropatterning technology is therefore essential not only for construction of biosurface devices but also for the investigation of the fundamental biology of cell-ECM interactions.  相似文献   

20.
Interferon gamma (IFN-gamma) inhibits in vitro the activation of hepatic stellate cells (HSC), the primary extracellular matrix-producing cells in liver fibrosis. This study was undertaken to determine in vivo the effect of IFN-gamma in the rat model of liver fibrosis induced by dimethylnitrosamine (DMN), where HSC activation represents an early response to cell injury. Rats were killed after 1 or 3 weeks of treatment with DMN, IFN-gamma, DMN + IFN-gamma, or saline. Immunohistochemistry was used to identify proliferating (desmin-positive/bromodeoxyuridine (BrdU)-positive cells) and activated (alpha-smooth-muscle actin [alpha-SMA]-positive cells) HSCs. Collagen deposition was determined colorimetrically and by morphometry. The parenchymal extension of desmin- and actin-positive cells and of fibrotic tissue was measured by point-counting technique and expressed as a percentage of area. Western blot was used to determine laminin and fibronectin accumulation. The levels of messenger RNA (mRNA) for procollagen type I, fibronectin, and laminin were evaluated by Northern blot. No differences were observed in rats treated with either saline or IFN-gamma alone. IFN-gamma reduced HSC activation induced by liver injury, as shown by the decreased number of proliferating HSC and the reduction of parenchymal area occupied by alpha-SMA-positive cells observed in DMN + IFN-gamma-treated animals compared with the DMN group. This was associated with reduced collagen, laminin, and fibronectin accumulation and lower levels of mRNA for procollagen type I, fibronectin, and laminin in the DMN + IFN-gamma group. Thus, this study indicates that IFN-gamma reduces extracellular matrix deposition in vivo by inhibition of HSC activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号