首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
DNA sequence variation in a 1.1-kb region including the coding portion of the Tpi locus was examined in 25 homozygous third-chromosome lines of Drosophila melanogaster, nine lines of Drosophila simulans, and one line of Drosophila yakuba. Our data show that the widespread allozyme polymorphism observed in cosmopolitan D. melanogaster is due to a glutamic acid substitution occurring in a phylogenetically conserved lysine that has been identified as part of the "hinged-lid" active site of the enzyme. This observation suggests that the replacement polymorphism may have important functional consequences. One replacement polymorphism was also observed in D. simulans, although its functional relevance is more difficult to assess, since it affects a site that is not strongly conserved. This amino acid change in D. simulans is associated with a single lineage possessing seven unique silent substitutions, which may be indicative of balancing selection or population subdivision. The absence of fixed amino acid differences between D. melanogaster and D. simulans and only a single difference with D. yakuba suggests that triose phosphate isomerase is under strong functional constraint. Silent variation is slightly higher for D. melanogaster than for D. simulans. Finally, we outline the general lack of evidence for old balanced polymorphisms at allozyme loci in D. melanogaster.  相似文献   

2.
The larval cuticle protein (Lcp) cluster in Drosophila melanogaster contains four functional genes and a closely related pseudogene. A 630-bp fragment including the larval cuticle pseudogene locus (Lcp psi) was nucleotide sequenced in 10 strains of D. melanogaster and a 458-bp Lcp psi fragment from D. simulans was also sequenced. We used these data to test the hypotheses that the rates of synonymous and nonsynonymous substitution are equal, that the absolute levels of variation are higher than in functional genes, and that intraspecific polymorphism is correlated with interspecific divergence. As predicted, synonymous and nonsynonymous substitution rates were equivalent, and overall nucleotide divergence between D. melanogaster and D. simulans (Jukes-Cantor distance = 0.149 +/- 0.150) was extremely high. However, within-species DNA sequence comparisons at Lcp psi revealed lower levels of polymorphism (theta = 0.001 +/- 0.001) than at many functional loci in D. melanogaster. Using the HUDSON, KREITMAN, and AGUADE (HKA) test, we show that the level of polymorphism in Lcp psi within D. melanogaster is lower than expected given the amount of divergence between D. melanogaster and D. simulans when the pseudogene data are compared to the Adh 5' flanking region. Because the Lcp psi lies in a region of relatively infrequent recombination, we suggest that the low level of within-species polymorphism is the result of background selection.  相似文献   

3.
We have analyzed nucleotide sequence variation at the Glucose dehydrogenase (Gld) locus from four populations of Drosophila melanogaster from four continents. All four population samples show a significant reduction in silent variation compared to the neutral expectation. The levels of silent variation across all four populations are consistent with the predictions of the background selection model; however, Zimbabwe has a remarkably low level of variation. In the face of dramatically reduced silent polymorphism, an amino acid variant, leading to the common allozyme polymorphism at Gld, remains in low to intermediate frequency in all non-African samples. In the Chinese population sample, the ratio of replacement to silent variation is significantly elevated compared to the neutral expectation. The difference in patterns of variation across these population samples suggests that selection on Gld (or the Gld region) has been different in the Chinese population than in the other three.  相似文献   

4.
Levels of nucleotide polymorphism in the Drosophila melanogaster genome are correlated with rates of recombination. This relationship may be due to hitchhiking of advantageous mutations (selective sweeps) or to continual removal of deleterious mutations from the genome (background selection). One test of the relative contributions of selective sweeps and background selection to the observed levels of variation in the genome of D. melanogaster is to compare levels of nucleotide variability (with a mutation rate on the order of 10(-9) per nucleotide per generation) with more rapidly evolving DNA loci such as microsatellites. This test depends critically on details of the mutational process of microsatellites. In this paper, we summarize our studies of microsatellite characteristics and mutation rates in D. melanogaster. We find that D. melanogaster microsatellites are short and have a mutation rate (6.5 x 10(-6) per locus per generation) several orders of magnitude lower than mammals studied to date. We further show that genetic variation at 18 dinucleotide repeat microsatellites in a population of D. melanogaster from Maryland is correlated with regional rates of recombination. These and other microsatellite data suggest that both background selection and selective sweeps may contribute to the correlation between DNA sequence variation and recombination in Drosophila.  相似文献   

5.
Populations of Drosophila melanogaster (Meigen) and Drosophila simulans (Sturtevant) from various geographic locations in North America and elsewhere were sampled to assess the distribution of malathion resistance and avermectin tolerance. Comparisons are made to previous reports of a differential response to malathion selection in these species. Results indicate that for malathion, resistance is widespread in D. simulans but varies considerably in D. melanogaster. For avermectins, although the pattern of tolerance is similar in both species, there exists a significant amount of variation in these levels between geographic regions. We consider how these different geographic patterns of resistance distribution may shed insight on the relative roles of population structure and exposure history in affecting the spread of resistance. In addition, we consider further the use of D. melanogaster and D. simulans as a model for examining the effects of insecticide exposure on sympatric populations.  相似文献   

6.
Two regions of the genome, a 1-kbp portion of the zeste locus and a 1.1-kbp portion of the yolk protein 2 locus, were sequenced in six individuals from each of four species: Drosophila melanogaster, D. simulans, D. mauritiana, and D. sechellia. The species and strains were the same as those of a previous study of a 1.9-kbp region of the period locus. No evidence was found for recent balancing or directional selection or for the accumulation of selected differences between species. Yolk protein 2 has a high level of amino acid replacement variation and a low level of synonymous variation, while zeste has the opposite pattern. This contrast is consistent with information on gene function and patterns of codon bias. Polymorphism levels are consistent with a ranking of effective population sizes, from low to high, in the following order: D. sechellia, D. melanogaster, D.mauritiana, and D. simulans. The apparent species relationships are very similar to those suggested by the period locus study. In particular, D. simulans appears to be a large population that is still segregating variation that arose before the separation of D. mauritiana and D. sechellia. It is estimated that the separation of ancestral D. melanogaster from the other species occurred 2.5-3.4 Mya. The separations of D. sechellia and D. mauritiana from ancestral D. simulans appear to have occurred 0.58-0.86 Mya, with D. mauritiana having diverged from ancestral D. simulans 0.1 Myr more recently than D. sechellia.  相似文献   

7.
8.
We have determined 1990 bp mitochondrial DNA sequence which extends from 3' end of the cytochrome oxidase subunit I (COI) gene to 5' end of the COIII gene from two sibling species of Drosophila, D. simulans and D. mauritiana. Analyses of the sequences and part of the NADH dehydrogenase subunit 2 gene and the COI gene together with those from D. melanogaster and D. yakuba revealed that amino-acid substitution rate of the ATPase 6 gene seems to be higher in some strains of D. melanogaster than in the other species. High level of amino-acid polymorphism in this gene was observed in D. melanogaster. Synonymous substitution rate is relatively constant in all the genes examined, suggesting that mutation rate is not higher in the ATPase 6 gene of D. melanogaster. The amino-acid substitutions found specifically in D. melanogaster are at the sites which are not conserved among mammals, yeast and E. coli. These sites of the ATPase 6 gene might lose the selective constraint in D. melanogaster, and the amino-acid substitutions can be explained by neutral mutations and random genetic drift.  相似文献   

9.
Synonymous codons are not used equally in many organisms, and the extent of codon bias varies among loci. Earlier studies have suggested that more highly expressed loci in Drosophila melanogaster are more biased, consistent with findings from several prokaryotes and unicellular eukaryotes that codon bias is partly due to natural selection for translational efficiency. We link this model of varying selection intensity to the population-genetics prediction that the effectiveness of natural selection is decreased under reduced recombination. In analyses of 385 D. melanogaster loci, we find that codon bias is reduced in regions of low recombination (i.e., near centromeres and telomeres and on the fourth chromosome). The effect does not appear to be a linear function of recombination rate; rather, it seems limited to regions with the very lowest levels of recombination. The large majority of the genome apparently experiences recombination at a sufficiently high rate for effective natural selection against suboptimal codons. These findings support models of the Hill-Robertson effect and genetic hitchhiking and are largely consistent with multiple reports of low levels of DNA sequence variation in regions of low recombination.  相似文献   

10.
The fitness effects of classes of DNA mutations can be inferred from patterns of nucleotide variation. A number of studies have attributed differences in levels of polymorphism and divergence between silent and replacement mutations to the action of natural selection. Here, I investigate the statistical power to detect directional selection through contrasts of DNA variation among functional categories of mutations. A variety of statistical approaches are applied to DNA data simulated under Sawyer and Hartl's Poisson random field model. Under assumptions of free recombination and stationarity, comparisons that include both the frequency distributions of mutations segregating within populations and the numbers of mutations fixed between populations have substantial power to detect even very weak selection. Frequency distribution and divergence tests are applied to silent and replacement mutations among five alleles of each of eight Drosophila simulans genes. Putatively "preferred" silent mutations segregate at higher frequencies and are more often fixed between species than "unpreferred" silent changes, suggesting fitness differences among synonymous codons. Amino acid changes tend to be either rare polymorphisms or fixed differences, consistent with a combination of deleterious and adaptive protein evolution. In these data, a substantial fraction of both silent and replacement DNA mutations appear to affect fitness.  相似文献   

11.
The enzyme alcohol dehydrogenase (ADH) from several naturally occurring ADH variants of Drosophila melanogaster and Drosophila simulans was isolated. Affinity chromatography with the ligand Cibacron Blue and elution with NAD+ showed similar behavior for D. melanogaster ADH-FF, ADH-71k, and D. simulans ADH. Introduction of a second Cibacron Blue affinity chromatography step, with gradient elution with NAD+, resulted in pure and stable enzymes. D. melanogaster ADH-SS cannot be eluted from the affinity chromatography column at a high concentration of NAD+ and required a pH gradient for its purification, preceded by a wash step with a high concentration of NAD+. Hybrid Drosophila melanogaster alcohol dehydrogenase FS has been isolated from heterozygous flies, using affinity chromatography with first elution at a high concentration NAD+, directly followed by affinity chromatography elution with a pH gradient. Incubation of equal amounts of pure homodimers of Drosophila melanogaster ADH-FF and ADH-SS, in the presence of 3 M urea at pH 8.6, for 30 min at room temperature, followed by reassociation yielded active Drosophila melanogaster ADH-FS heterodimers. No proteolytic degradation was found after incubation of purified enzyme preparations in the absence or presence of SDS, except for some degradation of ADH-SS after very long incubation times. The thermostabilities of D. melanogaster ADH-71k and ADH-SS were almost identical and were higher than those of D. melanogaster ADH-FF and D. simulans ADH. The thermostability of D. melanogaster ADH-FS was lower than those of D. melanogaster ADH-FF and ADH-SS. D. melanogaster ADH-FF and ADH-71k have identical inhibition constants with the ligand Cibacron Blue at pH 8.6, which are two times higher at pH 9.5. The Ki values for D. simulans ADH are three times lower at both pH values. D. melanogaster ADH-SS and ADH-FS have similar Ki values, which are lower than those for D. melanogaster ADH-FF at pH 8.6. But at pH 9.5 the Ki value for ADH-FS is the same as at pH 8.6, while that of ADH-SS is seven times higher. Kinetic parameters of Drosophila melanogaster ADH-FF, ADH-SS, and ADH-71k and Drosophila simulans ADH, at pH 8.6 and 9.5, showed little or no variation in K(m)eth values. The K(m)NAD values measured at pH 9.5 for Drosophila alcohol dehydrogenases are all lower than those measured at pH 8.6. The rate constants (kcat) determined for all four Drosophila alcohol dehydrogenases are higher at pH 9.5 than at pH 8.6. D. melanogaster ADH-FS showed nonlinear kinetics.  相似文献   

12.
A striking aspect of many vertebrate immune system is the exceptionally high level of polymorphism they harbor. A convincing case can be made that this polymorphism is driven by the diversity of pathogens that face selective pressures to evade attack by the host immune system. Different organisms accomplish a defense against diverse pathogens through mechanisms that differ widely in their requirements for specific recognition. It has recently been shown that innate defense mechanisms, which use proteins with broad-spectrum bactericidal properties, are common to both primitive and advanced organisms. In this study we characterize DNA sequence variation in six pathogen defense genes of Drosophila melanogaster and D. mauritiana, including Andropin; cecropin genes CecA1, CecA2, CecB, and CecC; and Diptericin. The necessity for protection against diverse pathogens, which themselves may evolve resistance to insect defenses, motivates a population-level analysis. Estimates of variation levels show that the genes are not exceptionally polymorphic, but Andropin and Diptericin have patterns of variation that differ significantly from neutrality. Patterns of interpopulation and interspecific differentiation also reveal differences among the genes in evolutionary forces.  相似文献   

13.
With the aim of revealing genetic variation accumulated among closely related species during the course of evolution, this study focuses on loss of macrochaetae on the notum as one of the developmental anomalies seen in interspecific hybrids between Drosophila melanogaster and its closely related species. Interspecific hybrids between a line of D. melanogaster and D. simulans isofemale lines exhibited a wide range in the number of missing bristles. By contrast, D. mauritiana and D. sechellia lines showed almost no reduction in bristle number in hybrids with D. melanogaster. Genetic analysis showed that the D. simulans X chromosome confers a large effect on hybrid bristle loss, although X-autosome interaction may be involved. This suggests that at least one genetic factor contributing to hybrid anomalies arose recently on a D. simulans X chromosome. Moreover, the results indicate sex dependency: the male hybrids were more susceptible to bristle loss than the female hybrids were. Use of cell type markers suggests that the defect does not lie in cell fate decisions during bristle development, but in the maintenance of neural fate and/or differentiation of the descendants of sensory mother cells.  相似文献   

14.
15.
The phylogenetic distribution of transposable families, P, gypsy, hobo, I, and mariner has been analyzed in 33 species of 11 groups of neotropical Drosophila and a Drosophilidae species Zygotrica vittimaculosa, using squash blot and dot blot. Genomic DNA of almost all neotropical species tested hybridized with gypsy probe and some species showed a particularly strong hybridization signal, as D. gaucha, D. virilis, and species of flavopilosa group. The hobo element was restricted to melanogaster group and some strains of D. willistoni. Only D. simulans DNA showed hybridization to mariner probe in all species tested and D. simulans and D. melanogaster showed hybridization with I element probe. P element homologous sequence was present in D. melanogaster and all species and strains of the willistoni and saltans groups tested. The presence of at least one P-homologous sequence was detected in Drosophila mediopunctata. This one was the only P-bearing species of all six tested from the tripunctata group. Four different pairs of primers homologous to segments of the canonical sequence of D. melanogaster's P were used to amplify specific sequences from D. mediopunctata DNA, showing the occurrence of seemingly well-conserved P-homologous sequences.  相似文献   

16.
Using deficiencies from Drosophila melanogaster, we looked for genomic regions in the sister species D. simulans that could cause lethality when hemizygous on a hybrid genetic background. Such genotypes allow hemizygous genes from one species to interact with heterozygous genes from other species and may correspond to the kinds of genotypes causing Haldane's rule, the observation that if only one gender is sterile or inviable in species hybrids, it is nearly always the heterogametic sex. A survey of roughly 50% of the D. simulans genome (114 chromosome regions) revealed only four regions causing hybrid lethality and five causing severe reductions in hybrid viability. However, the viability of all of these genotypes was at least partially restored by rearing hybrids at lower temperature or using different genetic backgrounds from D. simulans. We therefore detected no D. simulans chromosome regions causing unconditional hybrid lethality, although several regions were shown to be deleterious under most tested temperatures and genetic backgrounds. The relative paucity of "inviability genes" supports the idea, suggested by work on other species, that hybrid inviability between closely related species might be caused by interactions among relatively few genes, while hybrid sterility may involve many more loci.  相似文献   

17.
To reveal the genetic mechanism of host selection in a monophagous fruit fly Drosophila sechellia, olfactory responses and oviposition preferences of this species were compared with those of closely related polyphagous species, D. simulans and D. melanogaster. Adult flies of D. sechellia were strongly attracted to the ripe fruit of Morinda citrifolia which is known to be the sole breeding site of this species. They were also attracted to the odor of n-caproic acid which is contained in the ripe fruit of M. citrifolia and is presumably responsible for the characteristic odor of the fruit. In contrast, D. simulans and D. melanogaster showed a strong repulsion to n-caproic acid. In parallel with the olfactory responses, D. sechellia females laid eggs preferentially on a medium containing n-caproic acid, to which the other two species showed an aversion. Genetic analyses using the hybrid progeny between D. sechellia and D. simulans suggested that the species differences in these behaviors are controlled by gene(s) located on the second chromosome.  相似文献   

18.
Surveys in Drosophila have consistently found reduced levels of DNA sequence polymorphism in genomic regions experiencing low crossing-over per physical length, while these same regions exhibit normal amounts of interspecific divergence. Here we show that for 36 loci across the genomes of eight Lycopersicon species, naturally occurring DNA polymorphism (scaled by locus-specific divergence between species) is positively correlated with the density of crossing-over per physical length. Large between-species differences in the amount of DNA sequence polymorphism reflect breeding systems: selfing species show much less within-species polymorphism than outcrossing species. The strongest association of expected heterozygosity with crossing-over is found in species with intermediate levels of average nucleotide diversity. All of these observations appear to be in qualitative agreement with the hitchhiking effects caused by the fixation of advantageous mutations and/or "background selection" against deleterious mutations.  相似文献   

19.
Lethal phases of the hybrids between Drosophila melanogaster and its sibling species, D. simulans are classified into three types: (1) embryonic lethality in hybrids carrying D. simulans cytoplasm and D. melanogaster X chromosome, (2) larval lethality in hybrids not carrying D. simulans X, and (3) temperature-sensitive pupal lethality in hybrids carrying D. simulans X. The same lethal phases are also observed when either of the two other sibling species, D. mauritiana or D. sechellia, is employed for hybridization with D. melanogaster. Here, we describe genetic analyses of each hybrid lethality, and demonstrate that these three types of lethality are independent phenomena. We then propose two models to interpret the mechanisms of each hybrid lethality. The first model is a modification of the conventional X/autosome imbalance hypothesis assuming a lethal gene and a suppressor gene are involved in the larval lethality, while the second model is for embryonic lethality assuming an interaction between a maternal-effect lethal gene and a suppressor gene.  相似文献   

20.
The yellow (y) gene maps near the telomere of the X chromosome in Drosophila melanogaster but not in D. subobscura. Thus the strong reduction in the recombination rate associated with telomeric regions is not expected in D. subobscura. To study the divergence of a gene whose recombination rate differs between two species, the y gene of D. subobscura was sequenced. Sequence comparison between D. melanogaster and D. subobscura revealed several elements conserved in noncoding regions that may correspond to putative cis-acting regulatory sequences. Divergence in the y gene coding region between D. subobscura and D. melanogaster was compared with that found in other genes sequenced in both species. Both, yellow and scute exhibit an unusually high number of synonymous substitutions per site (ps). Also for these genes, the extent of codon bias differs between both species, being much higher in D. subobscura than in D. melanogaster. This pattern of divergence is consistent with the hitchhiking and background selection models that predict an increase in the fixation rate of slightly deleterious mutations and a decrease in the rate of fixation of slightly advantageous mutations in regions with low recombination rates such as in the y-sc gene region of D. melanogaster.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号