首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Atmospheric CO2 concentrations have increased dramatically over the last century and continuing increases are expected to have significant, though currently unpredictable, effects on ecosystems. One important process that may be affected by elevated CO2 is leaf litter decomposition. We investigated the interactions among atmospheric CO2, herbivory, and litter quality within a scrub oak community at the Kennedy Space Center, Florida. Leaf litter chemistry in 16 plots of open-top chambers was followed for 3 years; eight were exposed to ambient levels of CO2, and eight were exposed to elevated levels of CO2 (ambient + 350 ppmV). We focused on three dominant oak species, Quercus geminata, Quercus myrtifolia, and Quercus chapmanii. Condensed tannin concentrations in oak leaf litter were higher under elevated CO2. Litter chemistry differed among all plant species except for condensed tannins. Phenolic concentrations were lower, whereas lignin concentrations and lignin/nitrogen ratios were higher in herbivore-damaged litter independent of CO2 concentration. However, changes in litter chemistry from year to year were far larger than effects of CO2 or insect damage, suggesting that these may have only minor effects on litter decomposition.  相似文献   

2.
Induced volatile terpenes have been commonly reported among diverse agricultural plant species, but less commonly investigated in odorous plant species. Odorous plants synthesize and constitutively store relatively large amounts of volatiles, and these may play a role in defense against herbivores. We examined the effect of herbivory and methyl jasmonate (MeJA) exposure on the release of volatile organic compounds (VOCs) in the marsh elder, Iva frutescens, which contains numerous constitutive VOCs, mainly mono- and sesquiterpenes. Our specific goal was to test for the presence of inducible VOCs in a naturally occurring plant already armed with VOCs. The abundant, native specialist leaf beetle Paria aterrima was used in herbivore induction trials. VOCs were sampled from herbivore wounded and unwounded, and from MeJA treated and untreated I. frutescens. Total VOC emissions were significantly greater in response to herbivory and MeJA treatment compared to unwounded controls. Herbivore wounding caused a substantial shift in the emission profile (42 VOCs from wounded, compared to 8 VOCs from unwounded I. frutescens), and MeJA had a similar yet less substantial influence on the emission pattern (28 VOCs from MeJA treated compared to 8 VOCs from untreated I. frutescens). Constitutive VOC emissions predominated, but some VOCs were detected only in response to herbivory and MeJA treatment, suggesting de novo synthesis. Several VOCs exhibited a delayed emission profile in contrast to the rapid release of constitutive VOCs, and principal components analysis revealed they were not associated with constitutive emissions. While I. frutescens contains many constitutive VOCs that are released immediately in response to herbivory, it also produces novel VOCs in response to feeding by the specialist P. aterrima and MeJA treatment.  相似文献   

3.
Atmospheric CO2 concentrations have increased exponentially over the last century and continuing increases are expected to have significant effects on ecosystems. We investigated the interactions among atmospheric CO2, foliar quality, and herbivory within a scrub oak community at the Kennedy Space Center, Florida. Sixteen plots of open-top chambers were followed; eight of which were exposed to ambient levels of CO2 (350 ppm), and eight of which were exposed to elevated levels of CO2 (700 ppm). We focused on three oak species, Quercus geminata, Quercus myrtifolia, Quercus chapmanii, and one nitrogen fixing legume, Galactia elliottii. There were declines in overall nitrogen and increases in C:N ratios under elevated CO2. Total carbon, phenolics (condensed tannins, hydrolyzable tannins, total phenolics) and fiber (cellulose, hemicellulose, lignin) did not change under elevated CO2 across plant species. Plant species differed in their relative foliar chemistries over time, however, the only consistent differences were higher nitrogen concentrations and lower C:N ratios in the nitrogen fixer when compared to the oak species. Under elevated CO2, damage by herbivores decreased for four of the six insect groups investigated. The overall declines in both foliar quality and herbivory under elevated CO2 treatments suggest that damage to plants may decline as atmospheric CO2 levels continue to rise.  相似文献   

4.
The Kanzawa spider mite, Tetranychus kanzawai, is a polyphagous herbivore that feeds on various plant families, including the Leguminacae. Scars made by the mite on lima bean leaves (Phaseolus lunatus) were classified into two types: white and red. We obtained two strains of mites—“White” and “Red”—by selecting individual mites based on the color of the scars. Damage made by the Red strain induced the expression of genes for both basic chitinase, which was downstream of the jasmonic acid (JA) signaling pathway, and acidic chitinase, which was downstream of the salicylic acid (SA) signaling pathway. White strain mites also induced the expression of the basic chitinase gene in infested leaves but they only slightly induced the acidic chitinase gene. The Red genotype was dominant over the White for the induction of the acidic chitinase gene. The amount of endogenous salicylates in leaves increased significantly when infested by Red strain mites but did not increase when infested by White strain mites. JA and SA are known to be involved in the production of lima bean leaf volatiles induced by T. urticae. The blend of volatiles emitted from leaves infested by the Red strain were qualitatively different from those infested by the White strain, suggesting that the SA and JA signaling pathways are differently involved in the production of lima bean leaf volatiles induced by T. kanzawai of different strains.Ryo Matsushima and Rika Ozawa contributed equally to this work.  相似文献   

5.
Incubation experiments were conducted under controlled laboratory conditions to study the interactive effects of elevated carbon dioxide (CO2) and temperature on the production and emission of methane (CH4) from a submerged rice soil microcosm. Soil samples (unamended soil; soil + straw; soil + straw + N fertilizer) were placed in four growth chambers specifically designed for a combination of two levels of temperature (25 °C or 35 °C) and two levels of CO2 concentration (400 or 800 mol mol–1) with light intensity of about 3000 Lx for 16 h d–1. At 7, 15, 30, and 45 d after incubation, CH4 flux, CH4 dissolved in floodwater, subsurface soil-entrapped CH4, and CH4 production potential of the subsurface soil were determined. The results are summarized as follows: 1) The amendment with rice straw led to a severalfold increase in CH4 emission rates, especially at 35 °C. However, the CH4 flux tended to decrease considerably after 15 d of incubation under elevated CO2. 2) The amount of entrapped CH4 in subsurface soil and the CH4 production potential of the subsurface soil were appreciably larger in the soil samples incubated under elevated CO2 and temperature during the early incubation period. However, after 15 d, they were similar in the soil samples incubated under elevated or ambient CO2 levels. These results clearly indicated that elevated CO2 and temperature accelerated CH4 formation by the addition of rice straw, while elevated CO2 reduced CH4 emission at both temperatures.  相似文献   

6.
Elevated atmospheric CO2 (eCO2) and iron (Fe) availability are important factors affecting plant growth that may impact the proteomic profile of crop plants. In this study, soybean plants treated under Fe-limited (0.5 mM) and Fe-sufficient (20 mM) conditions were grown at ambient (400 μmol mol−1) and eCO2 (800 μmol mol−1) in hydroponic solutions. Elevated CO2 increased biomass from 2.14 to 3.14 g plant−1 and from 1.18 to 2.91 g plant−1 under Fe-sufficient and Fe-limited conditions, respectively, but did not affect leaf photosynthesis. Sugar concentration increased from 10.92 to 26.17 μmol g FW−1 in roots of Fe-sufficient plants and from 8.75 to 19.89 μmol g FW−1 of Fe-limited plants after exposure to eCO2. In leaves, sugar concentration increased from 33.62 to 52.22 μmol g FW−1 and from 34.80 to 46.70 μmol g FW−1 in Fe-sufficient and Fe-limited conditions, respectively, under eCO2. However, Fe-limitation decreases photosynthesis and biomass. Pathway enrichment analysis showed that cell wall organization, glutathione metabolism, photosynthesis, stress-related proteins, and biosynthesis of secondary compounds changed in root tissues to cope with Fe-stress. Moreover, under eCO2, at sufficient or limited Fe supply, it was shown an increase in the abundance of proteins involved in glycolysis, starch and sucrose metabolism, biosynthesis of plant hormones gibberellins, and decreased levels of protein biosynthesis. Our results revealed that proteins and metabolic pathways related to Fe-limitation changed the effects of eCO2 and negatively impacted soybean production.  相似文献   

7.
Induced plant responses to leaf-chewing insects have been well studied, but considerably less is known about the effects of phloem-feedings insects on induction. In a set of laboratory experiments, we examined density-dependent induction by the milkweed-oleander aphid, Aphis nerii, of putative defenses in four milkweed species (Asclepias incarnata, Asclepias syriaca, Asclepias tuberosa, and Asclepias viridis). We hypothesized that high aphid density would lead to increased cardenolide expression in species with low constitutive levels of cardenolides (e.g., A. tuberosa), but that there would be no induction in high constitutive cardenolide species (e.g., A. viridis). Based on previous studies, we did not expect cardenolide induction in A. incarnata. Contrary to our predictions, we observed feeding-induced declines of cardenolide concentrations in A. viridis. Cardenolide concentrations did not respond to aphid feeding in the other three milkweed species. Aphids also caused reductions in biomass accumulation by two of four Asclepias species, A. viridis and A. incarnata. High aphid density led to a decrease in A. viridis foliar nitrogen concentration. However, aphids had no effect on the defensive chemistry, growth, or nutritional quality of either A. syriaca or A. tuberosa. Our results highlight that congeneric plant species may respond differently to the same levels of herbivore damage.  相似文献   

8.
9.
We examined herbivore-induced responses of alfalfa (Medicago sativa) and cotton (Gossypium hirsutum) under different CO2 conditions. Plants were grown under ambient (350 ppm) or elevated (700 ppm) CO2 levels, and were either damaged or undamaged by Spodoptera littoralis larvae. At harvest, growth of undamaged (control) plants was determined, and foliar chemical composition of both undamaged and damaged plants was analyzed. Cotton grew faster overall and showed a greater increase in growth in response to CO2 enrichment than did alfalfa. Elevated CO2 levels increased starch and decreased nitrogen levels in damaged alfalfa and undamaged cotton plants. Alfalfa saponin levels were significantly increased by elevated CO2 and damage. Regarding specific saponins, medicagenic acid bidesmoside (3GlcA,28AraRhaXyl medicagenate) concentrations were reduced by high CO2, whereas zanhic acid tridesmoside (3GlcGlcGlc,23Ara,28AraRhaXylApi Za) levels were unaffected by the treatments. Soyasaponin I (3GlcAGalRha soyasapogenol B) was only detected in minute amounts. Alfalfa flavonoid analyses showed that total flavonoid levels were similar between treatments, although free apigenin increased and apigenin glucoside (7-O-[2-O-feruloyl-beta-D-glucuronopyranozyl (1-->2)-O-8-D-glucuronopyranozyl]-4'-O-beta-D-glucuronopyranozide apigenin) decreased in CO2-enriched plants. In cotton, herbivore damage increased levels of total terpenoid aldehydes, gossypol, hemigossypolone, the heliocides H1 and H4, but not H2 and H3, whereas CO2 enrichment had no effect. These results demonstrate that combined effects of CO2 and herbivore damage vary between plant species, which has implications for the competitive balance within plant communities.  相似文献   

10.
In plant growth room (PGR) and open-air pot (OAP) experiments, potato cvs King Edward and Maris Piper were grown under two nitrogen levels or two different nitrogen release patterns. Plants were subjected to infestation by peach potato aphids Myzus persicae (Homoptera: Aphididae). Total glycoalkaloid (GA) levels were measured in the foliage of both infested and non-infested plants, before, during and after aphid infestation. In the PGR experiment, aphid infestation reduced the amounts of total GAs in both cultivars. This reduction is attributed to the sugar deficiency induced in the plants owing to the dense aphid colonization. Results from the OAP experiment showed a temporal increase of GAs produced by potato cv. King Edward plants subjected to aphid infestation. Elevated amounts of nitrogen in the nutrient solutions (PGR experiment) reduced total GAs, while no differences were observed between manure and fertilizer treated plants (OAP experiment). It is concluded that the source of available nitrogen does not affect foliar GA synthesis in potatoes, and as a consequence, does not affect its endogenous chemical defense against insect herbivory. The case for insect-induced chemical defense mechanisms as triggered by low rates of aphid infestation is discussed.  相似文献   

11.
Theory predicts that plant resistance to herbivores is determined by both genetic and environmentally induced components. In this study, we demonstrate that the phenotypic expression of plant resistance to spider mite herbivory in Cucumis sativus is determined by genetic and environmental factors and that there is an interaction between these factors. Previous feeding by spider mites induced systemic resistance to subsequent attack over several spatial scales within plants, reducing the population growth of mites compared to that on control plants. Effects of induction were effective locally over the short term, but resulted in local increased susceptibility to spider mite attack after several days. However, this local induced susceptibility on the damaged leaf was associated with induced resistance on newer leaves. Induced resistance was correlated with increases in cucurbitacin content of leaves, but was not associated with changes in the density of leaf trichomes. Induced resistance to herbivory was not detected in plants of a genotype lacking constitutive expression of cucurbitacins, which were in general highly susceptibile to mite attack. Allocation trade-offs between growth and defense are often invoked to explain the maintenance of variation in the levels of plant resistance. Contrary to current thinking, neither constitutive nor herbivore-induced plant resistance were associated with reductions in plant allocation to root and shoot growth. However, plants that had high levels of induced resistance to spider mites were the most susceptible to attack by a specialist beetle. Such ecological trade-offs between resistance to generalist herbivores and susceptibility to specialist herbivores may be important in the maintenance of variation of plant resistance traits. In summary, C. sativus exhibits strong genetic variation for constitutive and induced resistance to spider mites, and this variation in resistance is associated with ecological trade-offs.  相似文献   

12.
The corrosion behavior of X70 steel and iron in water-saturated supercritical CO2 mixed with SO2 was investigated using weight-loss measurements. As a comparison, the instantaneous corrosion rate in the early stages for iron in the same corrosion environment was measured by resistance relaxation method. Surface analyzes using SEM/EDS, XRD and XPS were applied to study the morphology and chemical composition of the corroded sample surface. Weight-loss method results showed that the corrosion rate of X70 steel samples increased with SO2 concentration, while the corrosion rate increased before decreasing with SO2 concentration for iron sample. Comparing resistance relaxation method results with weight-loss method results, it is found that the instantaneous corrosion rate of iron is much higher than the uniform corrosion rate of the iron tablet specimens which are covered with thick corrosion product films after a long period of corrosion. The corrosion product films were mainly composed of FeSO4 and FeSO3 hydrates. The possible reaction mechanism under such environment was also analyzed, and the electrochemical reaction between the dissolved SO2 in the condensed water film with iron is the critical reaction step.  相似文献   

13.
The interaction of CO2 with K-promoted Mo2C/Mo(100) has been studied with high-resolution electron energy loss spectroscopy, work function measurements and temperature-programmed desorption. Pre-adsorbed potassium dramatically affects the adsorption behavior of CO2 on the Mo2C/Mo(100) surface. It increases the rate of adsorption, the binding energy of CO2 and it induces the dissociation of CO2 through the formation of negatively charged CO2. Potassium adatoms also promote the dissociation of adsorbed CO over Mo2C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
The frequency of waterlogging episodes has increased due to unpredictable and intense rainfalls. However, less is known about waterlogging memory and its interaction with other climate change events, such as elevated CO2 concentration (e[CO2]). This study investigated the combined effects of e[CO2] and two rounds of waterlogging stress on the growth of cultivated tomato (Solanum lycopersicum) and wild tomato (S. pimpinellifolium). The aim is to elucidate the interaction between genotypes and environmental factors and thereby to improve crop resilience to climate change. We found that two rounds of treatments appeared to induce different acclimation strategies of the two tomato genotypes. S. pimpinellifolium responded more negatively to the first-time waterlogging than S. lycopersicum, as indicated by decreased photosynthesis and biomass loss. Nevertheless, the two genotypes respond similarly when waterlogging stress recurred, showing that they could maintain a higher leaf photosynthesis compared to single stress, especially for the wild genotype. This showed that waterlogging priming played a positive role in stress memory in both tomato genotypes. Multivariate analysis showed that waterlogging played a dominant role when combined with [CO2] for both the cultivated and wild tomato genotypes. This work will benefit agricultural production strategies by pinpointing the positive effects of e[CO2] and waterlogging memory.  相似文献   

15.
The dynamics of produced CO and H2, measured by pulse surface reaction rate analysis (PSRA), revealed that the intermediate hydrocarbon species for the CO2-reforming of CH4 was highly hydrogen-deficient (CH0.75) on supported Co/Al2O3 catalyst. It was also found that the species was more reactive than the less hydrogen-deficient one (CH2.4) on Ni/Al2O3 catalyst.  相似文献   

16.
Chemical analyses performed on the invasive weed Phytolacca americana (pokeweed) growing in industrially contaminated (Ulsan) and noncontaminated (Suwon) sites in South Korea indicated that the levels of phenolic compounds and various elements that include some heavy metals (Al, As, B, Cd, Co, Cu, Fe, Mn, Ni, Pb, and Zn) were statistically higher in Ulsan soils compared to Suwon soils with Al being the highest (>1,116 mg/l compared to 432 mg/l). Analysis of metals and nutrients (K, Na, Ca, Mg, Cl, NH4, N, P, S) in plant tissues indicated that accumulation occurred dominantly in plant leaves with Al levels being 33.8 times higher in Ulsan plants (PaU) compared to Suwon plants (PaS). The ability of PaU and PaS to tolerate stress was evaluated under controlled conditions by varying atmospheric CO2 and temperature and soil pH. When grown in pH 6.4 soils, the highest growth rate of PaU and PaS plants occurred at elevated (30°C) and non-elevated (25°C) temperatures, respectively. Both PaU and PaS plants showed the highest and lowest growth rates when exposed to atmospheric CO2 levels of 360 and 650 ppm, respectively. The impact of soil pH (2–6.4) on seed germination rates, plant growth, chlorophyll content, and the accumulation of phenolics were measured to assess the effects of industrial pollution and global-warming-related stresses on plants. The highest seed germination rate and chlorophyll content occurred at pH 2.0 for both PaU and PaS plants. Increased pH from 2–5 correlated to increased phenolic compounds and decreased chlorophyll content. However, at pH 6.4, a marked decrease in phenolic compounds, was observed and chlorophyll content increased. These results suggest that although plants from Ulsan and Suwon sites are the same species, they differ in the ability to deal with various stresses.  相似文献   

17.
18.
Hao Liu 《Fuel》2003,82(11):1427-1436
Coal combustion with O2/CO2 is promising because of its easy CO2 recovery, extremely low NOx emission and high desulfurization efficiency. Based on our own fundamental experimental data combined with a sophisticated data analysis, its characteristics were investigated. It was revealed that the conversion ratio from fuel-N to exhausted NO in O2/CO2 pulverized coal combustion was only about one fourth of conventional pulverized coal combustion. To decrease exhausted NO further and realize simultaneous easy CO2 recovery and drastic reduction of SOx and NOx, a new scheme, i.e. O2/CO2 coal combustion with heat recirculation, was proposed. It was clarified that in O2/CO2 coal combustion, with about 40% of heat recirculation, the same coal combustion intensity as that of coal combustion in air could be realized even at an O2 concentration of as low as 15%. Thus exhausted NO could be decreased further into only one seventh of conventional coal combustion. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx could be realized with this new scheme.  相似文献   

19.
This article investigates the inactivation mechanism of high-pressure food treatment, considered as alternative to conventional biocidal processes. We aimed to determine intracellular pH decrease under CO2 and N2O pressure, so far postulated as one of the main causes of inactivation. Working with a lab-scale bioreactor in mild conditions – 25 °C and pressures up to 8 MPa – we monitored – for the first time during pressurization – cytoplasmic pH variations of Listeria innocua labeled with pH-sensitive fluorophores based on fluorescein.We show that carbonic acid, due to solubilization of CO2 into the aqueous phase, causes a rapid pH drop in the cytosol, reaching pH 4.8 at 1 MPa and falls below the detection limit of the indicator fluorophore of pH 4.0. This correlates with a reduced viability (below 90%) in all the pressure ranges investigated. Contrarily, treatment under N2O pressure reduces cell viability without significant pH-drop neither of intra- nor extra-cellular liquid at any pressure investigated. The pH value remains between 7 and 6 while an inactivation of more than 80% is achieved at 8 MPa.Our data clearly demonstrate that, as a critical pressure is achieved, microbial inactivation is mainly due to pressure-induced membrane permeation – stimulated by non-acidifying fluids as well, rather then cytoplasmic acidification, as widely argued so far. A definitive understanding of the microbial inactivation mechanism due to CO2/N2O under pressure has been advanced significantly.  相似文献   

20.
《应用陶瓷进展》2013,112(6):331-336
Abstract

Homogeneous precipitation method was applied to synthesise Ca2Co2O5 powders using calcium nitrate, cobalt nitrate and urea as raw materials. Uniform plate-like Ca2Co2O5 powders with an average grain size of 1 μm can be obtained by calcining the precursor for 8 h at 1073 K in the air. The Ca2Co2O5 ceramics were gained after sintering for 4 h at 1083 K using uniaxial pressure moulding and then sintering technique. The thermoelectric properties of ceramic samples were measured from 303 to 973 K, and the result shows that the electrical conductivity, Seebeck coefficient, thermal conductivity and figure of merit of the sample are 2236·85 S m?1, 175·95 μV K?1, 1·01 W m?1 K?1 and 0·69 at 973 K respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号