首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In agriculture production,plant health is threatened by pathogens parasitic on seeds;hence,it is necessary to disinfect harvested seeds before germination.In this study,a technique of gliding arc plasma treatment was proposed and investigated.The experiment was conducted to treat Astragalus membranaceus (A.membranaceus) seeds that were artificially infected with Fusarium oxysporum (F.oxysporum).The plasma treatment duration varied from 30 s to 270 s.Direct and indirect treatments were compared to evaluate the inactivation efficiency of the F.oxysporum spores on the surface of seeds.The results indicated that the direct treatment behaved significantly better in disinfection than the indirect way.Meanwhile,experiments of the quantitative assessment of seed germination were also conducted,including the germination rate,the germination potential,and the germination index.The results showed that the inactivation efficiency increased as the plasma treatment time was extended.When the treatment time was 90 s,the inactivation efficiency reached more than 98%.The plasma treatment of 270 s had a complete devitalization of F.oxysporum spores on the surface of the seeds.After the treatment of 30 s and 90 s,the seed germination parameters improved significantly.This study verified the inactivation efficacy of gliding arc discharge plasma under atmospheric pressure.The technique of gliding arc treatment shows advantages of energy saving and adaptation and has the potential to be utilized in industry.  相似文献   

2.
a gliding arc driven by the transverse magnetic field was ignited between the electrodes with a complicated shape at atmospheric pressure and a non-equilibrium plasma was gencrated. Under our experimental conditions, a phenomenon was clearly observed where the arc power decreased with the increase in arc voltage. As the arc voltage was higher than 3.375 kV, the are power acquired from the power supply decreased, and the arc plasma began to switch to a non-equilibrium phase. The existence of the non-equilibrium arc plasma was very short, about 10 ms in one gliding arc discharge cycle.  相似文献   

3.
A gliding arc plasma fuel atomization actuator suitable for aeroengines was designed, and a gliding arc plasma fuel spray experimental platform was built to address the fuel atomization problem in aeroengine combustion chambers. The spray characteristics for different airflows,fuel flows, and discharge voltages were analyzed using laser particle size analysis. The research shows that the fuel atomization effect is improved from the increased airflow. The decreased fuel flow not only reduces the ...  相似文献   

4.
The gliding arc is an important approach to production of non-thermal plasma at atmospheric pressure, it can offer high-energy efficiency and high-electivity for chemical reactions. In this paper, the gliding arc driven by the transverse magnetic field is described and its velocity is measured by using a photo-multiplier. The mean velocity of the gliding arc increases with increasing magnetic induced-intensity, and its value varies from 7.8 m/s to 32 m/s.  相似文献   

5.
In this work,a novel direct current (DC) atmospheric pressure rotating gliding arc (RGA) plasma reactor has been developed for plasma-assisted chemical reactions.The influence of the gas composition and the gas flow rate on the arc dynamic behaviour and the formation of reactive species in the N2 and air gliding arc plasmas has been investigated by means of electrical signals,high speed photography,and optical emission spectroscopic diagnostics.Compared to conventional gliding arc reactors with knife-shaped electrodes which generally require a high flow rate (e.g.,10-20 L/min) to maintain a long arc length and reasonable plasma discharge zone,in this RGA system,a lower gas flow rate (e.g.,2 L/min) can also generate a larger effective plasma reaction zone with a longer arc length for chemical reactions.Two different motion patterns can be clearly observed in the N2 and air RGA plasmas.The time-resolved arc voltage signals show that three different arc dynamic modes,the arc restrike mode,takeover mode,and combined modes,can be clearly identified in the RGA plasmas.The occurrence of different motion and arc dynamic modes is strongly dependent on the composition of the working gas and gas flow rate.  相似文献   

6.
Arc plasma torch is an effective tool for spheroidization of metallic powders. However, as most conventional plasma torches were not specifically designed for plasma spheroidization, they may exhibit the disadvantages of the radial injection of powders, large fluctuations in the arc voltage, large gas flow rate, and disequilibrium between multiple plasma jets during the spheroidization process. Therefore, this paper presents a triple-cathode cascade plasma torch (TCCPT) for plasma spheroidization. Its structural design, including three cathodes, a common anode, and three sets of inter-electrodes, are detailed to ensure that powders can be inserted into the plasma jet by axial injection, the arc voltage fluctuations are easily maintained at a low level, and the plasma torches can work at a relatively small gas flow rate. Experimental results showed that the proposed TCCPT exhibits the following characteristics: (1) a relatively small arc voltage fluctuation within 5.3%; (2) a relatively high arc voltage of 75 V and low gas flow rate range of 10–30 SLM; (3) easy to be maintained at the equilibrium state with the equilibrium index of the three plasma jets within 3.5 V. Furthermore, plasma spheroidization experiments of SUS304 stainless steel powers were carried out using the proposed TCCPT. Results verified that the proposed TCCPT is applicable and effective for the spheroidization of metallic powders with wide size distribution.  相似文献   

7.
赵宇含  马强  袁家涛  夏维东 《核技术》2006,29(10):750-753
大气压非热电弧的直径是确定电弧电流密度、从而确定等离子体电子密度和电子温度的重要参数之一.采用CCD摄影方法对大气压磁驱动滑移电弧在运动中的形状和尺寸进行了观察和测量,将电弧在CCD上的影像转换成灰度(光强)分布数据,对电弧图片径向上的灰度分布数据进行曲线拟合来确定电弧径向边界和直径;分别测量了电弧在运动方向的投影直径(正向直径)和垂直于运动方向上的投影直径(侧向直径),分析了电弧直径与电弧电流以及外加磁场之间的变化关系,并对电弧正向直径和侧向直径进行了对比分析.  相似文献   

8.
The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace(TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K(200 ℃) melt temperature and noise levels decreased by ~10 d B compared to a normal arc.Hydrogen plasma offered 100 K(100 ℃) higher melt temperature with ~5 d B higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.  相似文献   

9.
This paper is devoted to the simulation of the arc plasma in a simplified low-voltage circuit breaker chamber. Based on a group of coupled governing equations, a three-dimensional (3-D) arc plasma model is built and solved by a modified commercial code. Firstly, this paper presents a solution of the stationary state of the arc plasma and discusses the distribution of some parameters throughout the chamber. Secondly, with the ferromagnetic materials included, the balance of the stationary state is broken and a transient course is calculated. In light of the simulation results, the temperature distribution sequence, the arc motion and the plasma jet are then described and analyzed in detail.  相似文献   

10.
Stable combustion in an afterburner can help increase the thrust of the engine in a short time, thereby improving the maneuverability of a fighter. To improve the ignition performance of an afterburner, a twin-duct ignition platform was designed to study the performance of a gliding arc plasma igniter in close-to-real afterburner conditions. The research was carried out by a combination of experiments and simulations. The working environment of the igniter was explored through a numerical simulation. The results showed that the airflow ejected from the radiating holes formed a swirling sheath, which increased the anti-interference ability of the airflow jet. The influence of the pressure difference between the inlet and outlet of the igniter (Δp), the flow rate outside the igniter outlet (W2), and the installation angle (α) on the single-cycle discharge energy (E) as well as the maximum arc length (L) were studied through experiments. Three stages were identified: the airflow breakdown stage, the arc evolution stage, and the arc fracture stage. E and L increased by 107.3% and 366.2%, respectively, with Δp increasing from 10 to 70 Torr. The relationship between L and Δp obtained by data fitting is L = 3 − 2.47/(1 + (Δp/25)4). The relationship of L at different α is Lα=0° > (Lα=45° and Lα=135°) > Lα=180° > Lα=90°. E and L decrease by 18.2% and 37.3%, respectively, when Δp = 45 Torr and W2 is increased from 0 to 250 l min−1.  相似文献   

11.
Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit.We characterized the arc plasma jet flow appearance at different currents by using high-speed photography,and two polished contacts were used to search for the relationship between roughness and plasma jet flow.Then,to make the nature of arc plasma jet flow phenomena clear,a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated.The simulated DC arc plasma was presented with the temperature distribution and the current density distribution.Furthermore,the calculated arc flow vclocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress.The combined action of volume force and contact surface was the main reason of the arc jet flow.  相似文献   

12.
A two-temperature thermal non-equilibrium model is used to simulate and compare the arc characteristics within the converging-diverging and traditional cylindrical plasma torches.The modeling results show that the presence of the constrictor within the converging-diverging torch makes the evolution characteristics of the arc significantly different from that of cylindrical torch.Compared with a cylindrical geometrical torch,a much higher plasma flow velocity and relatively longer high temperature region can be generated and maintained inside the converging-diverging torch.In the constrictor of converging-diverging torch,the normalized radius of arc column increases and the degree of thermodynamic equilibrium of the plasma is significantly improved with the increase of axial distance.The radial momentum balance analysis shows that for the cylindrical torch,the pressure gradient that drives the arc expansion and the Lorentz force that drives the arc contraction dominate the radial evolution of the arc.While at the converging and constrictor region of a converging-diverging plasma torch,the radial gas dynamic forces in arc fringes pointing toward the arc center enhance the mixing of the cold gas of boundary layer with the high temperature gas of the arc center,increasing the average gas temperature and decreasing the thickness of cold boundary layer,thereby facilitating the formation of diffusion type arc anode attachment at the diverging section of torch.  相似文献   

13.
The effects of inter-electrode insertion on the performance of a hollow-electrode plasma torch have been investigated by numerical analysis. Simulation results revealed that when inter-electrodes are inserted, the arc voltages and plasma powers increase due to the increase in the arc length. In addition,it was predicted that thermal efficiency can be improved with the increase in plasma power by injecting plasma gases through the gaps between inter-electrodes. These unique effects of inter-electrode insertion are a result of the plasma temperatures adjusting themselves to increase arc voltages when the arc column is contracted radially by increasing gas-flow rate or decreasing inter-electrode diameter.  相似文献   

14.
As the main source of the vacuum arc plasma, cathode spots (CSs) play an important role on the behaviors of the vacuum arc. Their characteristics are affected by many factors, especially by the magnetic field. In this paper, the characteristics of the plasma jet from a single CS in vacuum arc under external axial magnetic field (AMF) are studied. A multi-species magneto-hydro-dynamic (MHD) model is established to describe the vacuum arc. The anode temperature is calculated by the anode activity model based on the energy flux obtained from the MHD model. The simulation results indicate that the external AMF has a significant effect on the characteristic of the plasma jet. When the external AMF is high enough, a bright spot appears on the anode surface. This is because with a higher AMF, the contraction of the diffused arc becomes more obvious, leading to a higher energy flux to the anode and thus a higher anode temperature. Then more secondary plasma can be generated near the anode, and the brightness of the ‘anode spot’ increases. During this process, the arc appearance gradually changes from a cone to a dumbbell shape. In this condition, the arc is in the diffuse mode. The appearance of the plasma jet calculated in the model is consistent with the experimental results.  相似文献   

15.
The dynamic process of arc pressure and corresponding arc column expansion, which is the main feature after arc ignition and has a significant effect on the breaking behaviour of low -voltage circuit breakers, is studied. By constructing a three dimensional mathematical model of air arc plasma and adopting the Control Volume Method, the parameters of arc plasma including temperature and pressure are obtained. The variations of pressure field and temperature field with time are simulated. The result indicates that there are six stages for the process of arc column expansion according to the variation of pressure in arc chamber. In the first stage, the maximal pressure locates in the region close to cathode, and in the second stage the maximal pressure shifts to the region close to the anode. In the third stage, the pressure difference between the middle of arc column and the ambient gas is very large, so the arc column begins to expand apparently. In the fourth stage, the pressure wave propagates towards both ends and the maximal pressure appears at the two ends when the pressure wave reaches both sidewalls. In the fifth stage, the pressure wave is reflected and collides in the middle of the arc chamber. In the last stage, the propagation and reflection of pressure wave will repeat several times until a steady burning state is reached. In addition, the experimental results of arc column expansion, corresponding to the arc pressure variation, are presented to verify the simulation results.  相似文献   

16.
In this paper, a three-dimensional non-equilibrium steady arc model is used to investigate the temperature, velocity and electromagnetic field in multi-cathode arc torch, and the formation mechanism of a large-area, uniform and diffused arc plasma is analyzed. The numerical simulation results show that a large volume plasma region can be formed in the central region of the generator during discharge. During this process, the maximum electron temperature appears near the cathode and in the central convergence region, while the maximum heavy particle temperature only appears in the central convergence region. This phenomenon is consistent with the experimental arc images. Near the cathode tip, the arc column is in a contraction state. In the area slightly away from the cathode, the six arc columns begin to join together. In the plasma generator, there is a large-scale current distribution in all directions of X, Y and Z, forming a stable arc plasma with a wide range of diffusion. The calculated electron temperature distribution is in good agreement with the measured electron temperature. The results suggest that the largearea diffused arc plasma in the multi-cathode arc torch is the combined effect of current distribution, convection heat transfer and heat conduction.  相似文献   

17.
Results observed experimentally are presented, about the DC arc plasma jets and their arc-root behaviour generated at reduced gas pressure without or with an applied magnetic field. Pure argon, argon-hydrogen or argon-nitrogen mixture was used as the plasma-forming gas. A specially designed copper mirror was used for a better observation of the arc-root behaviour on the anode surface of the DC non-transferred arc plasma torch. It was found that in the cases without an applied magnetic field, the laminar plasma jets were stable and approximately axisymmetrical. The arc-root attachment on the anode surface was completely diffusive when argon was used as the plasma-forming gas, while the arc-root attachment often became constrictive when hydrogen or nitrogen was added into the argon. As an external magnetic field was applied, the arc root tended to rotate along the anode surface of the non-transferred arc plasma torch.  相似文献   

18.
磁驱动旋转电弧运动图像及弧电压脉动的实验研究   总被引:1,自引:0,他引:1  
杜百合  黎林村  马强  陈佺  赵宇含  夏维东 《核技术》2005,28(10):745-750
磁驱动旋转电弧产生扩散电弧等离子体过程中有许多有趣的物理现象。本文利用高速摄影技术研究了大气压条件下、非均匀磁场中、大尺度磁驱动旋转氩电弧的电弧结构;在一定的弧电流和外磁场条件下,电弧的平面形状表现为不断发展和增长的螺旋结构,电弧螺旋结构的破裂往往产生于阴极附近的等离子体射流。采用图像分析的方法计算了外部磁场作用下阳极斑点沿弧室内壁的移动频率,分析了磁驱动旋转电弧运动过程中的弧电压脉动现象。结合电弧图像分析和电弧电压脉动及其FFT分析得出:电弧电压的大幅波动与多层电弧螺旋结构破裂和重建相关,而电弧电压的小幅波动则是弧根小幅跳动引起电弧拉长和收缩的结果。  相似文献   

19.
In this paper, characteristics of a treatment and operated at atmospheric pressure dual torch plasma arc used for hazardous waste are studied, and also compared with those of the multi-torch plasma arc and the single torch plasma arc. The dual torch plasma arc is generated between the cathode and anode with argon as the working gas. The temperature distributions of the plasma arc are measured using a spectroscope and line pair method with the assumption of local thermodynamic equilibrium (LTE) for the DC arc current I=100 A and argon flow rate Q = 15 slpm. The measurements show that the temperatures of the dual torch arc plasma in the regions near the cathode, the anode and the center point are 10,000 K, 11,000 K and 9,000 K, respectively. And the high temperature region of the multi torch plasma arc is of double or much wider size than that of a conventional dual torch plasma arc and single plasma torch. Based on the preceding studies, a dual torch plasma arc furnace is developed in this study. The measured gas temperature at the center region of the argon arc is about 11,000 K for the case of I=200 A and Q=30 slpm operated in atmosphere.  相似文献   

20.
Arc plasma can be applied in hazardous solid waste disposal for higher temperature than common heating methods, but some practical issues exist in practical engineering application. In this study, an air arc plasma torch with double chambers and magnetic controlling is designed to realize wide variable power and long electrode life. The detailed characteristics and laws of the air arc are studied. The condition parameters of arc current(I), air flow rate(G) and the structure parameters of inlet area ratios and electrode diameters influence both the arc voltage and arc root positions. The arc rotating driven by magnetic field effectively lengthens the electrode life. The gasification process and product of organic wastes by air plasma are influenced largely by the waste compositions and the air flow rate. A furnace structure with more even atmosphere and longer residence time should be considered for better gasification. Oxygen-deficient environment is important to suppress NOxformation during the application of air plasma. Inorganic solid wastes can be melt by the air plasma and cooled down to form compact vitreous structures in which heavy metals can be locked and the leaching rates significantly decrease down.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号