首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
3-Isobutyl-9,10-dimethoxy-1,3,4,6,7,11b-hexahydro-2H-pyrido[2,1-a]isoquinolin-2-ylamine (IDHPIA) was found to be a selective and highly sensitive derivatization reagent for carboxylic acid by high-performance liquid chromatography (HPLC) with electrogenerated chemiluminescence detection using tris(2,2'-bipyridine)ruthenium(II). Free fatty acids and phenylbutylic acid were used as model compounds of carboxylic acids, and the derivatization conditions were optimized with myristic acid. Under the mild reaction conditions of room temperature for 45 min in acetonitrile containing 2-bromo-1-ethylpyridinium tetrafluoroborate and 9-methyl-3,4-dihydro-2H-pyridol1,2-a]pyrimidin-2-one, all the fatty acids tested were reacted with IDHPIA to produce highly sensitive derivatives. The chemiluminescence intensity was essentially the same for all fatty acids. The derivatives obtained from 10 free fatty acids were completely separated by reversed-phase chromatography under isocratic elution conditions. The on-column detection limit (signal-to-noise ratio of 3) with proposed HPLC separation and chemiluminescence detection was 0.5 and 0.6 fmol for myristic acid and phenylbutylic acid, respectively. IDHPIA was 100-fold more sensitive than previously developed reagents (Morita, H.; Konishi, M. AnaL Chem. 2002, 74, 1584-1589). The free fatty acids in human serum were successfully determined using the present method.  相似文献   

2.
Li J  Yan Q  Gao Y  Ju H 《Analytical chemistry》2006,78(8):2694-2699
A novel method for highly sensitive detection of primary and secondary amino acids with selective derivatization using acetaldehyde as a new derivatization reagent was proposed by capillary electrophoresis (CE) coupled with electrogenerated chemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(II). The precolumn derivatization of these amino acids with acetaldehyde was performed in aqueous solution at room temperature for 1 h. Upon optimized derivatization, the ECL intensities and detection sensitivities of the amino acids were significantly enhanced by 20-70 times. Using four amino acids, arginine, proline, valine, and leucine, as model compounds, their derivatives could be completely separated by CE and sensitively detected by ECL within 22 min. The linear ranges were 0.5-100 microM for arginine and proline and 5-1000 microM for valine and leucine with the detection limits of 1 x 10(-7) (0.5 fmol, arginine), 8 x 10(-8) (0.4 fmol, proline), 1 x 10(-6) (5 fmol, valine), and 1.6 x 10(-6) M (8 fmol, leucine) at a signal-to-noise ratio of 3. The derivatization reactions and ECL process of amino acids were also proposed based on in situ Fourier transform infrared and ultraviolet spectrometric analyses.  相似文献   

3.
本文利用新型荧光试剂1,2-苯并-3,4-二氢咔唑-9-乙酸(BCAA)作为柱前衍生试剂建立了测定游离脂肪醇的方法,实验以1-乙基-3-(3-二甲氨基丙基)环己碳二亚胺(EDAC)作为缩合剂,4-二甲氨基吡啶(DMAP)为催化剂,55℃下衍生反应25min后获得稳定的荧光产物。在Eclipse XDB-C8色谱柱上,通过梯度洗脱对12种游离脂肪醇进行了分离和在线质谱定性。采用大气压化学电离源(APCI)正离子模式,对抗静电剂(十二烷基磷酸酯钾盐)中游离脂肪醇进行定性及相应含量测定。脂肪醇的线性回归系数大于0.9997,检测限在9.40-25.32fmol。  相似文献   

4.
Two exceedingly stable [Ru(bipy)(3)](3+) reagents were prepared by dissolving either [Ru(bipy)(3)](ClO(4))(2) in acetonitrile (containing 0.05 M HClO(4)) or [Ru(bipy)(3)]Cl(2)·6H(2)O in 95:5 glacial acetic acid-acetic anhydride (containing 0.05 M H(2)SO(4)) followed by oxidation with PbO(2). These conveniently prepared solutions provide highly reproducible chemiluminescence detection over long periods of analysis, avoiding the need for recalibration or preparation of fresh reagent solutions and without the complications associated with online chemical or electrochemical oxidations. The reagent prepared in acetonitrile produced much greater signal intensities with a range of analytes and was deemed most suitable for high-performance liquid chromatography (HPLC) with postcolumn chemiluminescence detection.  相似文献   

5.
During the course of our studies of the development of fluorogenic reagents having a 4,7-disubstituted benzofurazan structure, we previously proposed 7-acetylamino-4-mercapto-2,1,3-benzoxadiazole (AABD-SH) as a fluorogenic reagent for carboxylic acids. Since then, progress has made it possible to estimate the fluorescence quantum yields of the 4,7-disubstituted benzofurazan compounds on the basis of the PM3 calculation of their S1-T2 energies. Subsequently, a new fluorogenic reagent, 4-mercapto-7-methylthio-2,1,3-benzoxadiazole (MTBDSH) was designed and synthesized. In the presence of condensation reagents, triphenylphosphine (TPP) and 2,2'-dipyridyl disulfide (DPDS), MTBD-SH readily reacted with n-caprylic acid within 1 min at room temperature. The derivatives of five carboxylic acids (n-caprylic acid, n-capric acid, lauric acid, myristic acid, and palmitic acid) were well-separated on a reversed-phase column and were fluorimetrically detected at 519 nm with excitation at 391 nm. The detection limits (S/N = 3) were 2.4-5.0 fmol. Thus, MTBD-SH had properties that were considered to be superior. For carboxylic acids, itwas superior not only to AABD-SH, but also to many other conventional reagents. The superiority was examined in terms of its reactivity and sensitivity and the avoidance of interfering peaks that were derived from the reagent itself or degradation products in the chromatogram.  相似文献   

6.
Direct detection of biomolecules, such as alpha-amino acids, peptides, and proteins, was accomplished using a capillary electrophoresis-chemiluminescence detection system, in which a luminol-hydrogen peroxide-Cu(II)-catalyzed chemiluminescence reaction was utilized. Biomolecules migrated in the capillary, where they mixed with luminol and the Cu(II) catalyst included in the running buffer. The capillary outlet was inserted into a batch-type chemiluminescence detection cell with hydrogen peroxide-supplemented electrolyte solution. Chemiluminescence was observed at the tip of the capillary outlet. The chemiluminescence peak from biomolecules appeared due to the enhancement of Cu(II) catalytic activity for luminol-hydrogen peroxide chemiluminescence. The Cu(II) was more catalytically active when it interacted with biomolecules forming Cu(II)-biomolecule complexes. In this study, biomolecules were directly separated and detected in a capillary electrophoresis-chemiluminescence detection system. Twenty alpha-amino acids, 4 peptides, and 11 proteins were examined. Most of them were detected with satisfactory CL intensity response. Glutamic acid, an alpha-amino acid, was detected at concentrations ranging from 2.0 x 10(-7) to 1.2 x 10(-5) M with a detection limit (S/N = 3) of 1.0 x 10(-7) M (0.6 fmol). Glycylglycine, a peptide, was detected at concentrations ranging from 1.7 x 10(-7) to 1.2 x 10(-5) M with a detection limit (S/N = 3) of 1.7 x 10(-7) M (0.9 fmol). Hemoglobin, a heme protein, in which the heme structure was independently catalytically active, was detected at concentrations ranging from 1.2 x 10(-7) to 1.0 x 10(-5) M with a detection limit (S/N = 3) of 1.2 x 10(-7) M (0.6 fmol). Representative mixtures of alpha-amino acids and peptides were well detected with superior separation.  相似文献   

7.
A new method for the simultaneous determination of aliphatic carboxylic acids and aldehydes in air is described. In this work, carboxylic acids were allowed to react with 2,4-dinitrophenylhydrazine (DNPH) to form the corresponding carboxylic 2,4-dinitrophenylhydrazides. These derivatives have excellent thermal stability, with melting points higher than those of the corresponding hydrazones by 32-50 degrees C. C1-C4 carboxylic acid 2,4-dinitrophenylhydrazides exhibited maximum absorption wavelengths of 331-334 nm and molar absorption coefficients of 1.4 x 10(4) L/mol/cm. They were completely separated by high-performance liquid chromatography (HPLC) with an RP-Amide C16 column. Cartridges packed with DNPH-coated silica particles (DNPH cartridge) were used for sampling formic acid and aldehydes. Formic acid was physically adsorbed on the silica particles as the first step of the sampling mechanism. Gradual reaction with DNPH followed. Formic acid reacted very slowly with DNPH at room temperature (20 degrees C), but reacted completely at 80 degrees C over 4 h. In field measurements, the sample air was drawn through a DNPH cartridge. After sampling, the cartridges were heated at 80 degrees C for 5 h and extracted with acetonitrile for HPLC analysis. Under these optimized conditions, the LOD is 0.4 ug/m(3) for an air sample collected for 24 h at 100 mL/min (144 L).  相似文献   

8.
This paper focuses on the development of an enhanced LC/ESI-MS method for the identification and quantification of fatty acids through derivatization. Fatty acids were derivatized with 2-bromo-1-methylpyridinium iodide and 3-carbinol-1-methylpyridinium iodide, forming 3-acyloxymethyl-1-methylpyridinium iodide (AMMP). This process attaches a quaternary amine to analytes and enabled ESI-MS in the positive mode of ionization with common LC mobile phases. Moreover, detection sensitivity was generally 2500-fold higher than in the negative mode of ionization used with underivatized fatty acids. The limits of detection were roughly 1.0-4.0 nM (or 10 pg/injection) for standard fatty acids from C10 to C24 and spanned approximately 2 orders of magnitude in linearity. AMMP derivatives had unique tandem mass spectra characterized by common ions at m/z 107.0, 124.0, and 178.0. Individual fatty acids also had unique fingerprint regions that allowed identification of their carbon skeleton number, number of double bonds, and double bond position. The derivatization method also allowed coding of analytes as a means of recognizing derivatives and enhancing quantification. 2H-Coding was achieved through derivatization with deuterated 3-carbinol-1-methyl-d3-pyridinium iodide. The 2H-coded derivatization reagent, 3-acyloxymethyl-1-methyl-d3-pyridinium iodide, was used in two ways. One was to differentially label equal fractions of a sample such that after being recombined and analyzed by ESI-MS all fatty acids appeared as doublet clusters of ions separated by roughly 3 amu. This greatly facilitated identification of fatty acids in complex mixtures. Another use of stable isotope coding was in comparative quantification. Control and experimental samples were differentially labeled with nondeuterated and deuterated isotopomers of CPM, respectively. After mixing the two samples, they were analyzed by ESI-MS. The abundance of a fatty acid in an experimental sample relative to the control was established by the isotope ratio of the isotopomeric fatty acids. Absolute quantification was achieved by adding differentially labeled fatty acid standards to experimental samples containing unknown quantities of fatty acids. Utility of the method was examined in the analysis of human serum samples.  相似文献   

9.
建立了硒营养强化奶粉中L-硒-甲基硒代半胱氨酸含量柱前衍生高效液相荧光检测测定方法。奶粉样品经乙腈沉淀蛋白,上固相萃取柱处理后,与邻苯二甲醛和3-巯基丙酸进行衍生化反应。然后采用Diamonsil C18色谱柱(250mm×4.6mm,5μm),醋酸盐缓冲液-乙腈-甲醇为流动相,流速为1mL·min-1,柱温40℃,荧...  相似文献   

10.
A coulometric flow cell for a miniaturized LC system was developed. The cell was examined, as 3-O-methyl catecholamines were converted to their relative omicron-quinones for subsequent fluorometric and chemiluminescence detection. Its performance was evaluated in comparison with commercially available amperometric and coulometric detectors in terms of specification of the low dead volume and high conversion efficiency. The fully automated small-bore LC analyzer for simultaneous determination of catecholamines and their 3-O-methyl metabolites included precolumn pretreatment, column switching, column separation, postcolumn oxidative conversion, fluorometric derivatization, and chemiluminescence detection. The detection limits were 0.3-2.0 fmol for catecholamines and their 3-O-methyl metabolites. Because of the high sensitivity, the required volume of rat plasma sample was only 15 microL.  相似文献   

11.
A novel approach for analyzing underivatized very long chain fatty acids (C16-C26) and other apolar compounds such as triacylglycerols is described. It is based on reversed-phase HPLC separation followed by mass spectrometric detection. Partly miscible solvents are used for stepwise gradient elution starting with a methanol/water and ending with a methanol/n-hexane binary mixture. The developed technique does not need derivatization, and analysis is fast (fatty acids were separated in 2-min-long chromatograms) and robust. The developed method is also very sensitive; a quantitation limit in the low-picogram range was achieved for fatty acids. The separation mechanism and advantages of the suggested technique are discussed and illustrated in the case of blood analysis and plant oil characterization.  相似文献   

12.
A simple and rapid HPLC procedure is described for the assay of ibuprofen in bulk drug and tablets and for dosage uniformity testing. HPLC was carried out on a stainless steel octadecylsilane (5 urn) column (150 × 4.6 mm) using 25% 0.25M glacial acetic acid in acetonitrile as the mobile phase, with UV detection at 254 nm. Results obtained with this procedure compared favorably with those obtained using the USP procedures.  相似文献   

13.
A new chemical/spectroscopic couple that differentiates aromatic from aliphatic carboxylic acid polymers was developed. The method is complementary to more traditional methods of identification (IR) and is applicable to the analysis of complex mixtures where IR determinations are complicated by extensive vibrational band overlap. The method entails (1) conversion of carboxylic acids into acid fluorides and (2) specific detection of the resonances of the acid fluoride carbon and of the carbon directly attached to the carbonyl carbon by solid state (19)F-(13)C cross polarization (CP)/MAS (13)C NMR. The assignment of the chemical shift of the latter resonance to either the sp(2) or sp(3) carbon resonance manifold specifies the nature of the acid functionality. The preparation of the acid fluoride derivatives of several polymers containing aliphatic and aromatic carboxylic acid functionality was evaluated using sulfur tetrafluoride (SF(4)), diethylaminosulfur trifluoride (DAST), cyanuric fluoride, and thionyl fluoride. Room temperature reactions using DAST in methylene chloride or neat SF(4) gave the acid fluorides in yields ≥90% for the acids studied. Aromatic acid fluoride yields were essentially quantitative. Aliphatic acid fluorides were contaminated with the anhydride of the acid. The acid fluoride polymers were characterized by solid state (13)C and (19)F MAS/NMR.  相似文献   

14.
Abstract

A simple and rapid HPLC procedure is described for the assay of ibuprofen in bulk drug and tablets and for dosage uniformity testing. HPLC was carried out on a stainless steel octadecylsilane (5 urn) column (150 × 4.6 mm) using 25% 0.25M glacial acetic acid in acetonitrile as the mobile phase, with UV detection at 254 nm. Results obtained with this procedure compared favorably with those obtained using the USP procedures.  相似文献   

15.
(RS)-2-Arylpropionic acids (2-APAs) were derivatized with the fluorogenic reagents, 4-[(N,N-dimethylamino)sulfonyl]-7-piperazino-2,1,3-benzoxadiazole (DBD-PZ) and 4-[[(N-hydrazinoformyl)methyl]-N-methyl]amino-7-[N,N-(dimethylamino)sulfonyl]-2,1,3-benzoxadiazole (DBD-COHz), and their enantiomeric separation by a chiral stationary phase high-performance liquid chromatography was investigated in the reversed-phase mode with H(2)O/CH(3)CN or H(2)O/MeOH as the mobile phase on a column of cellulose tris(3,5-dimethylphenyl carbamate) coated on a silica gel support (Chiralcel OD-R). The derivatives with DBD-PZ were enantiomerically separated well under the elution condition of H(2)O/MeOH, based on the π-π interaction between the derivatives and the stationary phase. The rigid and bulky structure of DBD-PZ was demonstrated to be more effective as compared to the less rigid ones. The derivatives with DBD-COHz were more efficiently separated into each enantiomer with H(2)O/CH(3)CN as the eluent. The effective separation was based on hydrogen-bonding interaction between the acid hydrazide of the derivatives and the carbamoyl moiety of the stationary phase. There was a reversal in the elution order of the enantiomers between the two fluorescent derivatives. The detection limits obtained for each enantiomer were approximately 10-30 fmol on column. The derivatization with the reagent and the concomitant use of the reversed-phase and chiral stationary-phase HPLC were demonstrated to be useful for the enantiomeric quantification in rat plasma after intravenous administration of flurbiprofen racemate, a representative of 2-APAs.  相似文献   

16.
Two new reagents, NDTE (2,5-dihydroxyphenylacetic acid, 2,5-bis-tetrahydropyranyl ether p-nitrophenyl ester) and HLTE (homogentisic gamma-lactone tetrahydropyranyl ether), are described for the chemical derivatization of primary and/or secondary amines to form an electrochemically active product. These reagents undergo reaction with the aforementioned analytes to form a product possessing the hydroquinone moiety, thus allowing for reversible electrochemical detection at mild oxidation potentials. The reactivity of each reagent was demonstrated by using N-ethylbenzylamine (EBzA) and the dipeptide isoleucine leucine methyl ester as model analytes. The investigation included the isolation and identification of the intermediates and final products from derivatization of EBzA. These isolated standards were subsequently characterized with respect to electrochemical properties by means of cyclic voltammetry. In LC-EC experiments, the concentration limit of detection (CLOD) of the purified EBzA product was determined to be 5 nM (100 fmol) at a detection potential of +200 mV vs Ag/AgCl ([Cl-] = 3 M). The CLOD values obtained by LC-EC after derivatization of aqueous solutions of EBzA and Ile-Leu-OMe with NDTE were 25 nM (250 fmol) and 250 nM (2.5 pmol), respectively.  相似文献   

17.
The construction of functionalized poly(3,4‐ethylenedioxythiophene) (PEDOT) nanowire devices for label‐free protein detection is reported. Direct growth/assembly of PEDOT nanowires with carboxylic acid side‐chain functional groups (poly(EDOT‐COOH)) across the electrode junction is achieved by using an electric‐field‐assisted method. These functionalized PEDOT nanowire devices show typical depletion‐mode p‐type field‐effect transistor (FET) properties. Upon conjugation with a protein‐binding aptamer, the PEDOT nanowire FET devices are used for label‐free electronic detection of a target protein of interest. The binding of a positively charged protein causes a substantial decrease in current flow, attributed to the specific interaction between target protein molecules and aptamer‐conjugated polymer chains.  相似文献   

18.
We introduce a novel approach in highly selective and sensitive fluorescence derivatization of polyamines. This method is based on an intramolecular excimer-forming fluorescence derivatization with a pyrene reagent, 4-(1-pyrene)butyric acid N-hydroxysuccinimide ester (PSE), followed by reversed-phase high-performance liquid chromatography (HPLC). Polyamines, having two to four amino moieties in a molecule, were converted to the corresponding dipyrene- to tetrapyrene-labeled derivatives by reaction (100 degrees C, 20 min) with PSE. The derivatives afforded intramolecular excimer fluorescence (450-520 nm), which can clearly be discriminated from the monomer (normal) fluorescence (360-420 nm) emitted from PSE, its hydrolysate and monopyrene-labeled derivatives of monoamines. The structures of the derivatives were confirmed by HPLC with mass spectrometry, and the emission of excimer fluorescence could be proved by spectrofluorometry and time-resolved fluorometry. The PSE derivatives of four polyamines [putrescine (Put), cadaverine (Cad), spermidine (Spd), and spermine (Spm)] could be separated by reversed-phase HPLC on a C8 column with linear gradient elution. The detection limits (signal-to-noise ratio of 3) for the polyamines were 1 (Put), 1 (Cad), 5 (Spd), and 8 (Spm) fmol on the column. Furthermore, the present method was so selective that biogenic monoamines gave no peak in the chromatogram.  相似文献   

19.
A new electrogenerated chemiluminescence detection method is investigated for use in detection in reversed-phase and reversed-phase ion-pair HPLC with Ru(bpy)(3)(2+) in the mobile phase. In this method, different concentrations of Ru(bpy)(3)(2+) are dissolved in the mobile phase and the HPLC column flushed with the mobile phase for 1 h until the column is saturated with Ru(bpy)(3)(2+). The separated analytes along with Ru(bpy)(3)(2+) pass through an optical-electrochemical flow cell which has a dual platinum electrode held at a potential of 1250 mV vs a Ag/AgCl reference electrode. On the surface of the electrode, Ru(bpy)(3)(2+) is oxidized to Ru(bpy)(3)(3+) which reacts with the analytes to emit light. The retention times, retention orders, detection limits, and linearity in working curves are compared to those obtained with the conventional postcolumn Ru(bpy)(3)(2+) addition method. The retention times for dansyl amino acids with Ru(bpy)(3)(2+) in the mobile phase are longer than those obtained with the postcolumn addition approach. This may be caused by π-to-π interactions between the aromatic groups of the dansyl derivatives and the bipyridyl groups of Ru(bpy)(3)(2+) in the Ru(bpy)(3)(2+)-saturated reversed-phase column. Similarly, oxalate is separated from urine and blood plasma samples by reversed-phase ion-pair HPLC. Plasma samples are obtained using ultrafiltration to remove proteins from whole blood. Retention times for oxalate with the two detection techniques are identical, and detection limits for these techniques are compared.  相似文献   

20.
The conditions for sensitive and selective determination of tetracyclines in milk in the form of their complexes with Mg2+ via the HPLC method with post-column derivatization and fluorescence detection are found. It is shown that the fluorescence of tetracycline-Mg2+ complexes in microemulsions is 1.8 times more intense than that in aqueous acetonitrile medium. The detection limits of tetracycline, oxytetracycline, and doxycycline are 5, 8 and 25 ng mL–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号