首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
EfFects of heat treatments on hardness and dry wear properties of a semi-solid processed Fe-26.96 wt pct Cr- 2.91 wt pct C cast iron were studied. Heat treatments included tempering at 500℃, destabilisation at 1075℃ and destabilisation at 1075℃ plus tempering at 500℃, all followed by air cooling. Electron microscopy revealed that, in the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Tempering did not change the microstructure significantly when observed by scanning or transmission electron microscopy. Destabilisation followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite. Precipitation behaviour is comparable to that observed in the conventionally cast iron. Tempering after destabilisation resulted in a higher amount of secondary carbide precipitation within the tempered martensite in the eutectic structure. Vickers macrohardness and microhardness in the proeutectic zones were measured. Dry wear properties were tested by using a pin-on-disc method. The maximum hardness and the lowest dry wear rate were obtained from the destabilisation-plus-tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.  相似文献   

2.
We study gray spherulitic cast iron, its microstructure, hardness ultimate strength in tension, elongation, and impact toughness as functions of the duration of isothermal austenitizing in the bainite region at 350 and 400°C after austenitizing at 900°C. As the temperature of quenching increases from 350 to 400°C, the microstructure of the analyzed cast iron changes from lower to higher bainite and the amount of retained austenite increases (its maximum is attained after 1 h). At the same time, the ultimate strength in tension and hardness decrease, whereas the elongation and fracture toughness increase.Published in Fizyko-Khimichna Mekhanika Materialiv, Vol. 40, No. 4, pp. 79–83, July–August, 2004.  相似文献   

3.
The effects of Cr and/or Mo additions and tempering temperatures on mechanical properties in relation to the microstructural evolution during tempering were investigated in induction-tempered steels. The additions of Cr and/or Mo result in the finer distribution of cementite particles due to the decrease in the coarsening rates of cementite particles above tempering temperature of 400°C, while their influence is less effective at low tempering temperatures. Accordingly, the increments of tensile strength and yield strength by the addition of alloying elements become more pronounced at high temperatures above 400°C. The occurrence of maximum peak of yield strength at 400°C would be related to further precipitation of the cementite at low temperatures, and the subsequent spheroidization and coarsening process of the cementite at high temperatures. The addition of alloying elements does not change the minima in Charpy impact values, related to tempered martensite embrittlement, since alloying elements do not have an influence on the decomposition of retained austenite and the formation of the cementite at boundaries. The strain-hardening exponent, n, decreases up to 400°C and then continuously increases with tempering temperature. This abrupt increase of n at 300°C is related to the transformation of retained austenite during straining in induction-tempered steels.  相似文献   

4.
Abstract

The effects of alloying elements silicon, nickel, and vanadium, and the tempering temperatures on the mechanical properties, especially impact toughness, in 0.6C–(1.0–2.5)Si–(0.7–1.8)Ni–(0.1–0.2)V steels (wt-%), were investigated by performing hardness tests, impact tests, and TEM examination. The results obtained showed that the addition of silicon up to 2.5 wt-% shifted the embrittlement temperatures to higher temperatures, owing to the silicon retarding the formation and growth of cementite at boundaries. Additionally, it was found that the temperature of the peak in Charpy impact toughness v. tempering temperature curves coincided with the onset of the decomposition of retained austenite. The temperatures of the conversion of ε carbide to cementite and of the onset of tempered martensite embrittlement were not changed by the addition of nickel up to 2.0 wt-% in the present steels. However, the decomposition of retained austenite was delayed and the toughness was increased over all the tempering temperatures. The effect of the vanadium addition in the present steels was limited to the increase in hardness and impact toughness.  相似文献   

5.
The influences of different austenitizing and tempering temperatures on the microstructure and properties of three experimental ultra-high strength steels (UHS) have been investigated. The steels had different Ti content and were subjected to austenitizing treatment at 900, 1000, 1100 and 1200°C followed by oil quench and tempering at 200, 300, 450 and 600 °C. It has been found that the high temperature (1100 and 1200 °C) austenitizing treatments, alter both microstructure and properties, and depending on the subsequent tempering temperature, may have a beneficial or detrimental influence upon the mechanical properties. Addition of up to 0.011 wt% Ti to the steel composition improves hardness, toughness and tensile strength. This improvement in mechanical properties is obtainable with any subsequent heat treatment. For higher Ti content (0.089 wt%), although some further improvement in hardness and tensile strength was obtained, significant degradation in toughness was achieved, particularly when the steel was subjected to high temperature austenitizing and tempering treatment.  相似文献   

6.
In the present investigation, the influence of austempering treatment on the microstructure and mechanical properties of silicon alloyed cast steel has been evaluated. The experimental results show that an ausferrite structure consisting of bainitic ferrite and retained austenite can be obtained by austempering the silicon alloyed cast steel at different austempering temperature. TEM observation and X-ray analysis confirmed the presence of retained austenite in the microstructure after austempering at 400 °C. The austempered steel has higher strength and ductility compared to as-cast steel. With increasing austempering temperature, the hardness and strength decreased but the percentage of elongation increased. A good combination of strength and ductility has been obtained at an austempering temperature of 400 °C.  相似文献   

7.
Supermartensitic steels are a new class of martensitic stainless steels developed to obtain higher corrosion resistance and better toughness through the reduction of carbon content, and addition of Ni and Mo. They were developed to more critical applications or to improve the performance obtained with conventional grades AISI 410, 420, and 431. In this study, the influences of the tempering parameters on the microstructure, mechanical properties (hardness and toughness), and sensitization of a Ti-alloyed supermartensitc stainless steel were investigated. The material showed temper embrittlement in the 400–600 °C range, as detected by low temperature (−46 °C) impact tests. The degree of sensitization measured by double loop reactivation potentiodynamic tests increased continuously with the increase of tempering temperature above 400 °C. Healing due to Cr diffusion at high tempering temperatures was not observed. Double tempered specimens showed high amounts (>20%) of reverse austenite but their toughness were similar to specimens single tempered at 625 and 650 °C.  相似文献   

8.
通过对铸造C12A耐热钢进行热处理,观察其微观组织,测定其力学性能。试验结果表明:正(淬)火组织为板条马氏体+部分针状马氏体+少量残余奥氏体,其硬度比较高,塑性和韧性不是很好;正(淬)火+回火组织为回火马氏体,其硬度不是很高,塑性和韧性比较好,具有良好的综合性能;退火组织为铁素体,其硬度低,塑性和韧性高;通过正火+回火,研究回火温度对其微观组织和力学性能的影响。试验结果表明:回火温度对C12A钢的组织和性能有较大影响,其硬度随回火温度的升高呈先降后升趋势。  相似文献   

9.
对690 MPa级海工钢进行“淬火+两相区退火+回火”三步热处理,研究了回火温度对其组织和性能的影响、分析了力学性能变化与组织演变和残余奥氏体体积分数之间的关系。结果表明:回火后实验钢的显微组织为回火贝氏体/马氏体、临界铁素体和残余奥氏体的混合组织。随着回火温度的提高贝氏体/马氏体和临界铁素体逐渐分解成小尺寸晶粒,而残余奥氏体的体积分数逐渐增加;屈服强度由787 MPa降低到716 MPa,塑性和低温韧性明显增强,断后伸长率由20.30%增至29.24%,-40℃下的冲击功由77 J提升至150 J。残余奥氏体体积分数的增加引起裂纹扩展功增大,是低温韧性提高的主要原因。贝氏体/马氏体的分解和残余奥氏体的生成,引起组织细化、晶粒内低KAM值位错的比例逐渐提高和小角度晶界峰值的频率增大,使材料的塑性和韧性显著提高。  相似文献   

10.
The microstructure and amount of retained austenite (the austenite remained at room temperature) evolved in Fe–13%Cr–4%Ni martensitic stainless steel during intercritical tempering at 620 °C have been investigated. The amount of retained austenite showed a parabolic trend with increase in tempering time, which can be attributed to the gradual decrease in the thermal stability of the reversed austenite (the austenite formed at high temperature). The influences of chemical composition, morphology of reversed austenite, and mechanical constraints originating from tempered martensite matrix on the thermal stability have been discussed. The precipitation and growth of M23C6 in reversed austenite dilute the carbon concentration in reversed austenite. The spheroidization of lathy reversed austenite during tempering decreases the interfacial energy barrier to the phase transformation of reversed austenite to martensite. Furthermore, the decrease in the strength of martensite matrix lowers the strain energy associated with the transformation of reversed austenite to martensite. All these factors during tempering weaken the thermal stability of reversed austenite and facilitate the phase transformation of reversed austenite to martensite during the cooling step of intercritical tempering.  相似文献   

11.
Transmission electron microscopy has been used to study the microstructure of an experimental white cast iron, in which a combination of modified alloy composition and unconventional heat treatment has resulted in a fracture toughness of 40 MPa m-1/2. Microstructural features of the alloy that contribute to the toughness improvement and hence distinguish it from conventional white irons have been investigated. In the as-cast condition the dendrites are fully austenitic and the eutectic consists of M7C3 carbides and martensite. During heat treatment at 1130 °C the austenite is partially destabilized by precipitation of chromium-rich M7C3 carbides. This results in a dendritic microconstituent consisting of bulk retained austenite and secondary carbides which are sheathed with martensite. The martensite sheaths, which contain interlath films of retained austenite, are irregular in shape with some laths extending into the bulk retained austenite. Emphasis has been placed on the morphology, distribution, and stability of the retained austenite and its transformation products in the dendrites. The implications of these findings on the transformation toughening mechanism in this alloy are discussed.  相似文献   

12.
在真空条件下对航空轴承用8Cr4Mo4V钢进行不同温度的分级淬火并采用扫描电镜观察其微观组织、用XRD谱进行相分析并测试洛氏硬度、冲击性能和旋转弯曲疲劳性能,研究了真空分级淬火对其微观组织和力学性能的影响。结果表明,真空分级淬火后的8Cr4Mo4V钢其微观组织由下贝氏体、马氏体/残余奥氏体和碳化物组成;随着分级淬火温度的提高,淬火和回火态钢中析出碳化物的数量增加,残余奥氏体的含量降低。分级淬火温度为580℃时淬火态钢中贝氏体的含量最高(达到13.87%),残余奥氏体的含量为28.59%。回火后析出碳化物的含量和洛氏硬度均为所有分级温度中的最大值,分别为4.37%和62.38HRC。真空分级淬火能提高8Cr4Mo4V钢的综合力学性能。与未分级真空淬火相比,进行580℃×10 min真空分级淬火的8Cr4Mo4V钢的冲击韧性提高了23.3%,旋转弯曲疲劳极限提高了110 MPa。  相似文献   

13.
Fine film-like stable retained austenite was obtained in a Fe–0.08C–0.5Si–2.4Mn–0.5Ni in weight percent (wt.%) steel by the two-step intercritical heat treatment. The first step of intercritical annealing creates a mixed microstructure of preliminary alloy-enriched martensite and lean alloyed intercritical ferrite, which is called as “reverted structure” and “un-reverted structure”, respectively. The second step of intercritical tempering is beneficial for producing film-like stable reverted austenite along the reverted structure. The stabilization of retained austenite was studied by using scanning electron microscopy (SEM), transmission electron microscopy (TEM), dilatometry and X-ray diffraction (XRD) analysis. The two-step austenite reverted transformation associated with intercritical partition of C, Mn and Ni is believed to be the underlying basis for stabilization of retained austenite during the two-step intercritical heat treatment. Stable retained austenite is not only beneficial for high ductility, but also for low temperature toughness by restricting brittle fracture. With 10% (volume fraction) of retained austenite in the steel, high low temperature toughness with average Charpy impact energy of 65 J at −80 °C was obtained.  相似文献   

14.
The influence of tempering temperature on the reversed austenite formation and tensile properties are investigated in Fe-13%Cr-4%Ni-Mo low carbon martensite stainless steel in the temperature range of 550-950 °C. It is found that at the temperatures below 680 °C, the reversed austenite formation occurs by diffusion. Amount of the reversed austenite is determined by the tempering temperature and the holding time. The segregation of Ni is the main reason for the stability of the reversed austenite. When the temperatures are above 680 °C, the reversed austenite formation proceeds by diffusionless. The reversed austenite will transform back to martensite after cooled to room temperature. The tensile properties are most strongly influenced by the amount of the reversed austenite obtained at room temperature. The excellent combination of good strength and ductility is at 610 °C.  相似文献   

15.
A semi-solid processed 27 wt%Cr cast iron was studied by electron microscopy and its microstructure was related to the hardness. In the as-cast condition, the primary proeutectic austenite was round in shape while the eutectic M7C3 carbide was found as radiating clusters mixed with directional clusters. Growth in the [0 0 1]M7C3 with planar faces of {0 2 0}M7C3 and was usually observed with an encapsulated core of austenite. Destabilisation heat treatment followed by air cooling led to a precipitation of secondary M23C6 carbide and a transformation of the primary austenite to martensite in the semi-solid processed iron. Precipitation behaviour is comparable to that observed in the destabilisation of conventional cast iron. However, the nucleation of secondary M23C6 carbide on the eutectic M7C3 carbide was observed for the first time. Tempering after destabilisation led to further precipitation of carbide within the tempered martensite in the eutectic structure. The maximum hardness was obtained after destabilisation and tempering heat treatment due to the precipitation of secondary carbides within the martensite matrix and a possible reduction in the retained austenite.  相似文献   

16.
将低温贝氏体相变前淬火得到由马氏体、贝氏体铁素体和残余奥氏体组成的纳米贝氏体钢,使用扫描电镜(SEM)、X射线衍射(XRD)和透射电镜(TEM)等手段观察在不同温度回火的纳米贝氏体钢的显微组织和硬度变化,研究了预相变马氏体对纳米贝氏体钢热稳定性的影响。结果表明:含有马氏体的纳米贝氏体钢在中低温(473~773 K)回火后其硬度比回火前的高,回火温度高于823 K其硬度迅速下降到266.2HV(923 K)。预形成的马氏体在473~573 K回火后向附近的残余奥氏体排碳,后者的碳含量提高到峰值1.52%,提高了残余奥氏体的热稳定性,延迟后者在高温时的分解,从而提高了纳米贝氏体钢的高温热稳定性;回火温度高于723 K则残余奥氏体分解成碳化物,贝氏体铁素体粗化、回复形成新的铁素体晶粒。  相似文献   

17.
In the present study an ultra high strength armour steel was austenatised at 910°C followed by tempering at 200, 300, 400, 500 and 600°C. After heat treatment the properties of tensile strength, ductility, charpy impact strength, hardness and microstructure were evaluated from the mechanical tests and metallographic analysis respectively. The ballistic behavior of the heat-treated plates was evaluated impacting against non-deformable hard steel core projectiles at 840 ± 15 m/s at normal angle of attack. The changes in the microstructure and mechanical properties with heat treatment have been correlated with ballistic performance of the steel. Experimental results showed that 200°C tempering gives the best ballistic performance.  相似文献   

18.
Abstract

The effect of austenitising temperature on the microstructure, mechanical properties, and dimensional stability of a spheroidal graphite iron containing copper and nickel has been investigated. It was found that as the temperature increased the amount of carbon taken into solution by the austenite increased thus reducing the driving force of the original austenite to bainitic ferrite and high carbon austenite. As a consequence, the amount of retained austenite increased, but its stability decreased. This placed an upper limit on the austenitising temperature and on the amount of retained austenite permissible. All properties other than hardness showed maximum values after austenitising at 900°C. It was also found that increasing the solution treatment temperature increased the dimensional stability.

MST/1116  相似文献   

19.
This study focuses on the characterization of the microstructures of an FeCrMoVC alloy in two states (an as-cast and a heat-treated state) as well as the compressive strain rate-dependent material and fracture toughness behavior. Both microstructures consist of martensite, retained austenite and complex carbides. Tempering results in a transformation of retained austenite into martensite, the precipitation of fine alloy carbides, and diffusion processes. High yield stresses, flow and ultimate compressive strength values at a relatively good deformability were measured. The yield and flow stresses at the onset of deformation are higher for the heat-treated state due to higher martensitic phase fractions and fine precipitations of alloy carbides respectively. Compressive deformation causes a strain-induced transformation of retained austenite to α′-martensite. Hence, both high-strength alloys are TRIP-assisted steels (TRansformation-Induced Plasticity). However, the martensitic transformation is more pronounced in the as-cast state due to higher phase fractions of retained austenite already in the initial state. Examinations of strained microstructures showed decreased crystallite sizes with increasing deformation. It is assumed that, during plastic deformation, the amount of low angle grain boundaries increases while the incremental formation of α′-martensite leads to decreased crystallite size. In general, lower microstrains were determined in the heat-treated state as a consequence of stress relaxation during tempering. In comparison to commercially available tool steels, the determined fracture toughness K Ic of both variants revealed relatively high fracture toughness values. It was found that the lower shelf of K Ic is already reached at room temperature. Higher loading rates $ \dot{K} $ resulted in lower dynamic fracture toughness K Id values. Notch fracture toughness K A measurements indicate that the critical notch tip radii of the examined materials are slightly smaller than 0.09?mm.  相似文献   

20.
Effects of quenching and tempering treatments on the development of microstructure and mechanical properties of ultrahigh strength 0.3C Si–Mn–Cr–Mo low alloy steel were investigated. Samples were austenitized at 1123–1323 K for 2400 s and oil quenched (OQ) to produce mixed microstructures. Tempering was carried out at 473–773 K for 2–3 h. Phase transformation temperatures were measured using dilatometer. The microstructures were characterized using optical and scanning electron microscope. SEM–EDS analysis was carried out to determine the type and size of non-metallic inclusions. Volume percent of retained austenite was measured by X-ray diffraction technique. Hardness, tensile properties, and impact energies were also determined for all heat treated conditions. Fractography of impact specimens were done using stereomicroscope and SEM. The results showed that newly developed steel exhibited peak hardness, yield strength, and tensile strength of about 600 HV, 1760 MPa, and 1900 MPa, respectively, when OQ from 1203 K and tempered in between 473 and 573 K, combined with adequate ductility and impact toughness. Decrease in hardness and strength was observed with increasing tempering temperature whereas the impact energy was stable up to 623 K, however, impact energy was found to decrease above 632 K due to temper martensite embrittlement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号