首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
There are numerous cutting models which describe the chip formation process. However, they are based on a number of simplifying assumptions. In order to verify these assumptions and to get a better understanding of the cutting process, the different stress states in the chip formation zone were determined by means of diffraction experiments with monochromatic high-energy synchrotron X-radiation during orthogonal, quasistatic cutting of the material C45E. The results from the experiments are compared with simulated stresses. The experimental data indicate that the assumption of a free chip flow according to the shear angle model of Opitz and Hucks is not valid. The model was therefore extended considering the normal stresses in direction of the chip flow.  相似文献   

2.
Titanium alloys present superior properties such as high strength-to-weight ratio and resistance to corrosion but, possess poor machinability. In this study, influence of material constitutive models and elastic–viscoplastic finite element formulation on serrated chip formation for modeling of machining Ti–6Al–4V titanium alloy is investigated. Temperature-dependent flow softening based modified material models are proposed where flow softening phenomenon, strain hardening and thermal softening effects and their interactions are coupled. Orthogonal cutting experiments have been conducted with uncoated carbide (WC/Co) and TiAlN coated carbide cutting tools. Temperature-dependent flow softening parameters are validated on a set of experimental data by using measured cutting forces and chip morphology. Finite Element simulations are validated with experimental results at two different rake angles, three different undeformed chip thickness values and two different cutting speeds. The results reveal that material flow stress and finite element formulation greatly affects not only chip formation mechanism but also forces and temperatures predicted. Chip formation process for adiabatic shearing in machining Ti–6Al–4V alloy is successfully simulated using finite element models without implementing damage models.  相似文献   

3.
In machining processes, a decreasing undeformed chip thickness leads to an increase in the specific machining forces. This effect is commonly known as the scaling effect in chip formation. In the literature, several reasons for this effect are discussed. One approach focuses on the increase in the strain rate due to a decrease in the undeformed chip thickness. The increase in the strain rate leads to a hardening effect of the machined material which results in higher specific cutting forces. However, it has not been definitely proven that this is the cause of the scaling effect in chip formation. This paper describes an approach for examining the influence of the strain rate on the scaling effect. Firstly, FE-simulations have been carried out to gain knowledge about the strain rates in the center of the shear zone. By means of these simulations, cutting speeds which lead to constant strain rates in the center of the shear zone have been determined for a broad range of chip thickness. In a second step, experimental investigations have been carried out using the simulated cutting speeds and chip thicknesses. The chip formation processes and the machining forces have been analyzed with constant strain rates and different chip thicknesses as well as with a constant cutting speed. The main result of these investigations is that the strain rate has only a minor influence on the specific cutting forces. It is shown that the temperature in the shear zone decreases with a decrease in the chip thickness. This leads to lower thermal softening of the material and thus to higher specific cutting forces.  相似文献   

4.
A new material constitutive law is implemented in a 2D finite element model to analyse the chip formation and shear localisation when machining titanium alloys. The numerical simulations use a commercial finite element software (FORGE 2005®) able to solve complex thermo-mechanical problems. One of the main machining characteristics of titanium alloys is to produce segmented chips for a wide range of cutting speeds and feeds. The present study assumes that the chip segmentation is only induced by adiabatic shear banding, without material failure in the primary shear zone. The new developed model takes into account the influence of strain, strain rate and temperature on the flow stress and also introduces a strain softening effect. The tool chip friction is managed by a combined Coulomb–Tresca friction law. The influence of two different strain softening levels and machining parameters on the cutting forces and chip morphology has been studied. Chip morphology, cutting and feed forces predicted by numerical simulations are compared with experimental results.  相似文献   

5.
Machining of Inconel 718 at higher cutting speeds is expected to provide some relief from the machining difficulties. Therefore, to understand the material behavior at higher cutting speeds, this paper presents an analytical model that predicts specific shearing energy of the work material in shear zone. It considers formation of shear bands that occur at higher cutting speeds during machining, along with the elaborate evaluation of the effect of strain, strain rate, and temperature dependence of the shear flow stress using Johnson–Cook equation. The model also considers the ‘size-effect’ in machining in terms of occurrence of ‘ploughing forces’ during machining. The theoretical results show that the shear band spacing in chip formation increases linearly with an increase in the feedrate and is of the order of 0.2–0.9 mm depending upon the processing conditions. The model shows excellent agreement with the experimental values with an error between 0.5% and 7% for various parametric conditions.  相似文献   

6.
In this study, an experimental investigation was carried out on fine and ultrafine metallic dust emission during high-speed milling of 6061-T6 aluminum alloy in wet and dry conditions. Measurements of dust emission were conducted using a scanning mobility particle sizer spectrometer and an aerodynamic particle sizer spectrometer. These instruments were used to characterize particles in the micrometer and the nanometer size ranges. It was confirmed that the machining process produces nanoparticles as small as 10 nm and that the characteristics of the generated nanoparticles are not significantly influenced by the cutting conditions. The cutting forces and chip compression ratio were measured to validate the proposed dust generation model based on an energy approach. Good agreement was observed between the model and the experimental measurements for the investigated conditions. It was demonstrated that the majority of generated dust is caused by deformations in the primary shear zone. In addition, the percentage of generated dust is significantly influenced by deformation conditions in the chip formation zone. It was found that high cutting speeds could reduce the percentage of the generated particles during the milling process.  相似文献   

7.
The chip segmentation process has a significant effect on the cutting force fluctuation during machining which could affect tool vibration and tool wear. This paper deals with a quantitative analysis of the chip segmentation phenomenon in metal machining. The notion of intensity of the phenomenon has been introduced. Various parameters have been proposed for this purpose. These parameters are based on dimensional characteristics of the segmented chip and the strain distribution within the chip. A Finite Element based modelling has been developed to simulate the chip formation process in the case of machining aeronautical aluminium alloy AA2024-T351 with WC-Co based cutting tools. From the simulated chip morphologies, introduced chip segmentation parameters are assessed. The impact of the cutting speed and tool geometry on the chip segmentation intensity is clearly highlighted. The relevance of each parameter is discussed. Cutting force and contact length fluctuations with respect to the cutting speed variation when segmentation occurs are discussed and deeply analysed. A correlation between average cutting force reduction and segmentation intensity when the cutting speed increases as well as between chip formation process and cutting force oscillation has been established thanks to the introduced parameters, showing thus their usefulness.  相似文献   

8.
Cutting temperature and its distribution in the cutting zone are a critical factor that significantly affects tool life and degrades part accuracy during metal removal operations. However, issues surrounding their modeling and experimental validation in the immediate cutting zone still remain an unresolved issue. A major impediment is the unavailability of adequate temperature measurement methods with sufficient temporal and spatial resolution to measure actual temperatures and validate predictive models. In this paper, a model for the dry orthogonal cutting process with thermo-mechanical coupling effects, i.e., interactions between the stress state, strain rates and the temperature softening of material in the plastic deformation zone, is proposed to predict cutting temperature distribution in the cutting zone. The feasibility and prediction accuracy of the model is verified by experimental measurements through Thin Film Thermocouple (TFTC) arrays embedded at the immediate vicinity of the cutting zone into Polycrystalline Cubic Boron Nitride (PCBN) tooling. The experimental verification is performed under hard turning conditions. It has been shown that the predictions of the proposed model are in very close agreement with the experimentally measured results including the cutting forces, chip thickness and cutting temperature distributions on the rake and flank faces in the cutting zone. Furthermore, the modeling results have also provided an essential understanding on the stress distributions at the tool/chip and work/tool interfaces as well as of the nature of the chip flow velocity along the rake face of the cutting tool.  相似文献   

9.
Thermomechanical modelling of oblique cutting and experimental validation   总被引:1,自引:4,他引:1  
An analytical approach is used to model oblique cutting process. The material characteristics such as strain rate sensitivity, strain hardening and thermal softening are considered. The chip formation is supposed to occur mainly by shearing within a thin band called primary shear zone. The analysis is limited to stationary flow and the material flow within the primary shear zone is modelled by using a one-dimensional approach. Thermomechanical coupling and inertia effects are accounted for. The chip flow angle is determined by the assumption that the friction force on the tool face is collinear to the chip flow direction. At the chip–tool interface, the friction condition can be affected by the important heating induced by the large values of pressure and sliding velocity. In spite of the complexity of phenomena governing the friction law in machining, a reasonable assumption is to consider that the mean friction coefficient is primarily function of the average temperature at the tool–chip interface. Comparisons between model predictions and experimental results are performed for different values of cutting speed, undeformed chip thickness, normal cutting angle and inclination angle. A critical study is presented in order to show the influences of the input parameters of the model including the normal shear angle, the thickness of the primary shear zone and the pressure distribution at the tool–chip interface. The model permits to predict the cutting forces, the chip flow direction, the contact length between the chip and the tool and the temperature distribution at the tool–chip interface which has an important effect on tool wear.  相似文献   

10.
钛合金高速切削切屑形成机理的有限元分析   总被引:2,自引:0,他引:2  
钛合金在切削加工时容易产生锯齿状切屑,周期性的锯齿状切屑会引起切削力高频波动,从而影响加工表面质量和刀具寿命。然而其切屑形成的机理尚无统一的结论。本研究采用刚塑性有限元模型以及正交化Cockroft—Latham断裂准则,对钛合金Ti6A14V高速正交切削进行了仿真。仿真结果显示,周期性断裂理论能很好地解释钛合金锯齿状切屑形成的机理,主剪切变形区应力状态的变化是裂纹萌生与扩展的主要原因。研究结论与相关试验切屑显微照片特征相吻合,可以为实现钛合金高速切削提供理论依据和技术支持。  相似文献   

11.
In this paper, a numerical model based on the finite difference method is presented to predict tool and chip temperature fields in continuous machining and time varying milling processes. Continuous or steady state machining operations like orthogonal cutting are studied by modeling the heat transfer between the tool and chip at the tool—rake face contact zone. The shear energy created in the primary zone, the friction energy produced at the rake face—chip contact zone and the heat balance between the moving chip and stationary tool are considered. The temperature distribution is solved using the finite difference method. Later, the model is extended to milling where the cutting is interrupted and the chip thickness varies with time. The time varying chip is digitized into small elements with differential cutter rotation angles which are defined by the product of spindle speed and discrete time intervals. The temperature field in each differential element is modeled as a first-order dynamic system, whose time constant is identified based on the thermal properties of the tool and work material, and the initial temperature at the previous chip segment. The transient temperature variation is evaluated by recursively solving the first order heat transfer problem at successive chip elements. The proposed model combines the steady-state temperature prediction in continuous machining with transient temperature evaluation in interrupted cutting operations where the chip and the process change in a discontinuous manner. The mathematical models and simulation results are in satisfactory agreement with experimental temperature measurements reported in the literature.  相似文献   

12.
This paper proposes a methodology to identify the material coefficients of constitutive equation within the practical range of stress, strain, strain rate, and temperature encountered in metal cutting. This methodology is based on analytical modeling of the orthogonal cutting process in conjunction with orthogonal cutting experiments. The basic mechanics governing the primary shear zone have been re-evaluated for continuous chip formation process. The stress, strain, strain rate and temperature fields have been theoretically derived leading to the expressions of the effective stress, strain, strain rate, and temperature on the main shear plane. Orthogonal cutting experiments with different cutting conditions provide an evaluation of theses physical quantities. Applying the least-square approximation techniques to the resulting values yields an estimation of the material coefficients of the constitutive equation. This methodology has been applied for different materials. The good agreement between the resulting models and those obtained using the compressive split Hopkinson bar (CSHB), where available, demonstrates the effectiveness of this methodology.  相似文献   

13.
A plane strain finite element method is used with a new material constitutive equation for 1020 steel to simulate orthogonal machining with continuous chip formation. Deformation of the workpiece material is treated as elastic–viscoplastic with isotropic strain hardening, and the numerical solution accounts for coupling between plastic deformation and the temperature field, including treatment of temperature-dependent material properties. To avoid numerical errors associated with large deformation of elements, automatic remeshing is used, with at least 15 rezonings required to achieve a satisfactory solution. Effects of the uncertainty in the constitutive model on the distributions of strain, stress and temperature around the shear zone are presented, and the model is validated by comparing average values of the predicted stress, strain, strain rate and temperature at the shear zone with experimental results. Parametric effects associated with cutting speed and initial work temperature are considered in the simulations.  相似文献   

14.
When the machining process is miniaturized two process mechanisms, ploughing and chip formation, are essential and a critical cutting thickness needs to be exceeded so that not only ploughing will occur but chips will also be formed. The ploughing effect thereby influences the chip formation process, workpiece surface roughness, burr formation and residual stress state after processing and is therefore of great interest. In order to optimize the machining process a better understanding of the minimum thickness of cut is crucial.The changes in surface topography along the cutting track occurring during machining with a constant feed rate of the cutting tool were analyzed. The influence of the built-up edge phenomena on the micro machining process was investigated for normalized AISI 1045 using confocal white light microscopy and scanning electron microscopy. Furthermore the sin2ψ-method was applied in order to study the residual stress state in the workpiece surface induced by the machining process. Both surface layer properties investigated, surface roughness and residual stresses, show a characteristic transition indicating a change in the dominating process mechanisms. Based on these results a model is developed to determine the minimum thickness of cut. The minimum thickness of cut is found to significantly decrease with higher cutting velocities and to moderately increase with higher cutting edge radii. In addition a propagation of error for the values obtained with the model was performed, proving the quality of the model developed.  相似文献   

15.
In the field of materials mechanics the influence of the state of stress on the plastic deformation behavior of metals is known since decades. However, the state-of-stress influences are usually not considered in structural or processing simulations. Nevertheless, its application in the numerical investigation of manufacturing processes seems very promising since, for example, machining processes are characterized by complex states of stress. Consequently, its incorporation in the computation of the workmaterial's flow stress may increase the physical conformity and accuracy of cutting FE-analysis.This paper presents the creation and experimental validation of a 3D-FEM model of the longitudinal turning process with an extended modified Bai–Wierzbicki material model (extended MBW model). This newly developed material model evaluates the influence of state of stress as well as damage on the strain hardening behavior. In addition, it takes temperature and strain rate effects into consideration, whose influences are both typically higher in cutting processes than in structural–mechanical problems.For the validation of the proposed material model, longitudinal turning experiments were conducted on AISI 1045 steel. Four different cutting tools and process conditions were investigated, which cover a broad range from finishing to roughing. A high speed camera was used to film the chip formation and chip flow in order to compare it to the simulation results. The three cutting forces components were also collected. Measured chip temperatures were taken from the literature. The validation showed that the implementation of the selected material model results in a close agreement between experimentally obtained and predicted chip geometries, cutting forces and chip temperatures.  相似文献   

16.
This paper re-evaluates the known velocity relationships expressed in the form of a velocity diagram in orthogonal metal cutting, arguing that the metal cutting process be considered as cyclic and consisting of three distinctive stages. The velocity diagrams for the second and third stages of a chip-formation cycle are discussed. The fundamentals of the mechanics of orthogonal cutting, which are the upper-bound theorem applied to orthogonal cutting and the real virtual work equation, are re-evaluated using the proposed velocity diagram and corrected relationships are proposed. To prove the theoretical results, the equation for displacements in the deformation zone is derived using the proposed velocity relationships. To prove that the displacements in the deformation zone follow the derived equation and that this zone consists of two unequal parts, a metallographical study of chip structures has been carried out. To estimate the variation of stress and strain in the deformation zone quantitatively, a microhardness scanning test was conducted.Because it is proved that the chip formation process is cyclic, its frequency is studied. It is shown that when the noise due to various inaccuracies in the machining system is eliminated from the system response and thus from the measuring signal, and when this signal is then properly processed, the amplitude of the peak at the frequency of chip formation is the largest in the corresponding autospectra.  相似文献   

17.
An orthogonal cutting model for finish machining, using diamond and tungsten carbide tools which have different coeffficients of thermal conductivity, was simulated and analyzed. It was assumed that the tool had a minute amount of tool flank wear. The distribution of strain rate and stress within the machined workpiece and the determination of the cutting force were obtained after simulation. The generation and distribution of temperature and stress within the chip through cutting of the workpiece were also acquired. In addition, the temperature of the tool, the workpiece and the chip during finish machining by the two different tools, that show the effects of the different friction coefficients of the diamond tool and the tungsten carbide tool on cutting, were compared. Finally, the cutting forces predicted by the model for orthogonal finish machining were compared with those obtained by experiment, and it appears that the present orthogonal finish machining model is reasonable.  相似文献   

18.
A new cooling approach with cryogenic compressed air has been developed in order to cool the cutting tool edge during turning of Ti–6Al–4V alloy. The cutting forces, chip morphology and chip temperature were measured and compared with those measured during machining with compressed air cooling and dry cutting conditions. The chip temperature is lower with cryogenic compressed air cooling than those with compressed air cooling and dry machining. The combined effects of reduced friction and chip bending away from the cutting zone as a result of the high-speed air produce a thinner chip with cryogenic compressed air cooling and a thicker chip with compressed air cooling compared to dry machining alone. The marginally higher cutting force associated with the application of cryogenic compressed air compared with dry machining is the result of lower chip temperatures and a higher shear plane angle. The tendency to form a segmented chip is higher when machining with cryogenic compressed air than that with compressed air and dry machining only within the ranges of cutting speed and feed when chip transitions from continuous to the segmented. The effect of cryogenic compressed air on the cutting force and chip formation diminishes with increase in cutting speed and feed rate. The application of both compressed air and cryogenic compressed air reduced flank wear and the tendency to form the chip built-up edge. This resulted in a smaller increase in cutting forces (more significantly in the feed force) after cutting long distance compared with that observed in dry machining.  相似文献   

19.
Magnesium–Calcium (MgCa) alloys become attractive orthopedic biomaterials due to their biodegradability, biocompatibility, and congruent mechanical properties with bone tissues. However, process mechanics of cutting biomedical MgCa alloys is poorly understood. Mechanical properties of the biomedical magnesium alloy at high strain rates and large strains are determined using the split-Hopkinson pressure bar testing method. Internal state variable (ISV) plasticity model is implemented to model the material behavior under cutting regimes. A finite element analysis (FEA) model has been developed to study the chip formation during high speed dry cutting of MgCa0.8 (wt%) alloy. Continuous chip formation predicted by finite element simulation is verified by high speed dry face milling of MgCa0.8 using polycrystalline diamond (PCD) inserts. Chip ignition as the most hazardous aspect in machining Mg alloys does not occur in high-speed dry cutting with sharp PCD tools. The predicted temperature distribution well explains the reason for the absence of chip ignition in high speed dry cutting of MgCa0.8 alloy. In addition, sporadic surface deterioration and void marks on the back face of chips are explained.  相似文献   

20.
In this paper, a finite element method for predicting the temperature and the stress distributions in micro-machining is presented. The work material is oxygen-free-high-conductivity copper (OFHC copper) and its flow stress is taken as a function of strain, strain rate and temperature in order to reflect realistic behavior in machining process. From the simulation, a lot of information on the micro-machining process can be obtained; cutting force, cutting temperature, chip shape, distributions of temperature and stress, etc. The calculated cutting force is found to agree with the experiment result with the consideration of friction characteristics on the chip–tool contact surface. Because of considering the tool edge radius, this cutting model using the finite element method can analyze micro-machining with a very small depth of cut, almost the same size of tool edge radius, and can observe the ‘size effect' characteristic. Also, the effects of temperature and friction on micro-machining are investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号