首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fear-potentiated startle is defined as an increase in the magnitude of the startle reflex in the presence of a stimulus that was previously paired with an aversive event. It has been proposed that a subject's awareness of the contingencies in the experiment may affect fear-potentiated startle. The authors adapted a conditional discrimination procedure (AX+/BX-), previously validated in animals, to a human fear-potentiated startle paradigm in 50 healthy volunteers. This paradigm allows for an assessment of fear-potentiated startle during threat conditions as well as inhibition of fear-potentiated startle during safety conditions. A response keypad was used to assess contingency awareness on a trial-by-trial basis. Both aware and unaware subjects showed fear-potentiated startle. However, awareness was related to stimulus discrimination and fear inhibition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

2.
Separate groups of rats were given 30 pairings of a light (conditioned stimulus, CS) and a 500-ms shock (unconditioned stimulus, US) at CS–US intervals of 0, 25, 50, 100, 200, 800, 3,200, 12,800, or 51,200 ms. Other groups had lights and shocks inconsistently paired. The startle reflex was elicited 2–4 days later with a noise burst alone or 25–51,200 ms after light onset. After CS–US pairings over a range of intervals (25–51,200 ms), startle was potentiated in testing, as rapidly as 50 ms after light onset. Magnitude of potentiation and resistance to extinction were generally greater with longer CS–US intervals. In several groups, potentiation was maximal at a test interval that matched the CS–US interval used in training. This temporal specificity sharpened with increasing numbers of training trials but even occurred with a single training trial in which a 51,200-ms CS–US interval was used. Data indicate that even during simple fear conditioning (FC), animals rapidly learn a temporal CS–US relationship. This has implications for understanding the neural mechanisms of FC. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

3.
A good deal is now known about the neural circuitry involved in how conditioned fear can augment a simple reflex (fear-potentiated startle). This involves visual or auditory as well as shock pathways that project via the thalamus and perirhinal or insular cortex to the basolateral amygdala (BLA). The BLA projects to the central (CeA) and medial (MeA) nuclei of the amygdala, which project indirectly to a particular part of the acoustic startle pathway in the brainstem. N-methyl-D-aspartate (NMDA) receptors, as well as various intracellular cascades in the amygdala, are critical for fear learning, which is then mediated by glutamate acting in the CeA. Less predictable stimuli, such as a long-duration bright light or a fearful context, activate the BLA, which projects to the bed nucleus of the stria terminalis (BNST), which projects to the startle pathway much as the CeA does. The anxiogenic peptide corticotropin-releasing hormone increases startle by acting directly in the BNST. CeA-mediated behaviors may represent stimulus-specific fear, whereas BNST-mediated behaviors are more akin to anxiety. NMDA receptors are also involved in extinction of conditioned fear, and both extinction in rats and exposure-based psychotherapy in humans are facilitated by an NMDA-partial agonist called D-cycloserine. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

4.
Research has shown that learned fear emerges in a response-specific sequence. For example, freezing is observed at a younger age than is potentiated startle (P. Hunt & B. A. Campbell, 1997). The present study shows that the age at which a specific learned fear response emerges is influenced by the animal's early experiences. Specifically, fear potentiation of startle emerges earlier in development if the rat is given prior fear conditioning to a different stimulus. Some constraints of this "facilitation" effect are determined in follow-up experiments. This facilitation effect may provide a novel way of testing the development of the neural circuits underlying learned fear. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

5.
Recently, R. Richardson, A. Vishney, and J. Lee (1999) reported that ambient odor cues that were previously paired with footshock potentiate the acoustic startle response in rats. The authors of the present study extend those findings by using a discrete 4-s amyl acetate odor paired with footshock to address several parametric issues that might be important for using odorants as conditioned stimuli (CSs) in this paradigm. Amyl acetate (5%) had no significant effect on startle in untrained rats but did potentiate startle in rats that received 1, 2, 5, or 10 odor-shock pairings. Fear-potentiated startle decreased but was still significant up to 40 days after conditioning and could be measured in test trials separated by as little as 30 s. The magnitude of potentiated startle decreased with decreasing concentrations of amyl acetate (5%-5 x 10-9%). The anxiolytic compound buspirone (10 mg/kg) significantly attenuated olfactory-mediated fear-potentiated startle. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

6.
Pretraining intra-amygdala infusions of the NMDA receptor antagonist, D,L-AP5, block fear-potentiated startle in rats tested 24+ hr after training. This may reflect a failure of either acquisition or retention. To evaluate these alternatives, rats were tested for fear-potentiated startle during fear conditioning (30 light-shock pairings [0.6 mA shock]), as well as 1–30 min and 48 hr after fear conditioning. Amygdala lesions abolishes fear-potentiated startle at all train-test intervals. Intra-amygdala AP5 infusions (25 nmol/side) abolished fear-potentiated startle during the long-term test and had partial effects at shorter train-test intervals. When the level of fear-potentiated startle during the short-term test was lowered to that of the 48-hr test (i.e., by training rats with a lower, 0.3 mA footshock), AP5 abolished fear-potentiated startle at each timepoint. Thus, amygdala NMDA receptors appear to participate in the initial acquisition of fear memories. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

7.
The effects of an anxiolytic drug (diazepam) on emotional responses to aversive stimuli were investigated using physiological measures, including the startle probe reflex. Participants were 54 university students assigned to either a placebo group or a 10 mg or 15 mg diazepam group in a doubleblind design. Blink responses to intermittent noise probes were recorded during viewing of neutral and unpleasant slides. Consistent with prior animal work, diazepam blocked startle potentiation during aversive stimulus processing without decreasing the overall magnitude of startle responses. These findings suggest that a common defensive state mediates startle reflex potentiation in animals and humans and that this index of fear can be used to assess the emotional effects of different drugs. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

8.
Examined the developmental emergence of fear-potentiated startle in rats ranging in age from 16 to 75 days. In Exp 1, a pure tone served as the CS and an acoustic startle pulse served as the unconditioned stimulus (UCS) for fear conditioning. Fear-potentiated startle by the tone CS was observed in rats 23 days of age and older but not in rats 16 days of age. In Exp 2, a light served as the CS. Rats 30 days of age and older showed fear-potentiated startle, whereas 23-day-old rats did not. The final experiment demonstrated that another behavioral index of fear, stimulus-elicited freezing, was observed earlier in development than fear-potentiated startle, confirming the effectiveness of the training procedure for conditioning fear. Results suggest that fear-potentiated startle is a relatively late-emerging response system, parallelling the development of conditioned autonomic changes (e.g., heart rate) rather than that of freezing. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

9.
gamma-Hydroxybutyric acid (GHB) is unfamiliar to many physicians in the United States but enjoys clinical use elsewhere for applications in resuscitation, anesthesia, and addiction therapy. Use within the United States is restricted to Food and Drug Administration-approved clinical trials for treatment of narcolepsy. Recently illicit use of GHB has emerged within the United States where it is distributed for purported euphoric and "fat-burning" metabolic effects. Clinical effects can be severe, progressing rapidly to respiratory arrest and death. We provide an updated comprehensive review of the literature with particular emphasis on toxicology, including GHB pharmacodynamics, clinical effects, and suggestions for overdose management. Recommended management of acute GHB intoxication includes prevention of aspiration, use of atropine for persistent symptomatic bradycardia, consideration of neostigmine as a reversal agent, and treatment for coingested substances. Emergency physicians are urged to become familiar with GHB because of its potential for severe morbidity as well as its potential use as a future resuscitative agent.  相似文献   

10.
It is well known that lesions of the hippocampal formation produce a temporally graded retrograde amnesia for certain types of memory. A similar pattern of results has been reported with amygdaloid lesions in avoidance learning (K. C. Liang et al, 1982). The present study examined the effects of posttraining amygdaloid lesions using a Pavlovian conditioning task, fear-potentiated startle, in which the amplitude of the acoustic startle reflex is increased when elicited in the presence of a cue (e.g., a light) previously paired with footshock. Electrolytic lesions of the amygdala given either 6 or 30 days after training blocked the expression of potentiated startle, indicating no temporal gradient of amnesia over these intervals in this test paradigm. The effects of amygdaloid lesions on different measures of aversive learning are discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

11.
The authors investigated the role of medial prefrontal cortex (mPFC) in the inhibition of conditioned fear in rats using both Pavlovian extinction and conditioned inhibition paradigms. In Experiment 1, lesions of ventral mPFC did not interfere with conditioned inhibition of the fear-potentiated startle response. In Experiment 2, lesions made after acquisition of fear conditioning did not retard extinction of fear to a visual conditioned stimulus (CS) and did not impair "reinstatement" of fear after unsignaled presentations of the unconditioned stimulus. In Experiment 3, lesions made before fear conditioning did not retard extinction of fear-potentiated startle or freezing to an auditory CS. In both Experiments 2 and 3, extinction of fear to contextual cues was also unaffected by the lesions. These results indicate that ventral mPFC is not essential for the inhibition of fear under a variety of circumstances. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

12.
The roles of the dorsal hippocampus and the central nucleus of the amygdala in the expression of contextual fear were assessed using two measures of conditioned fear: freezing and fear-potentiated startle. A discriminable context conditioning paradigm was developed that demonstrated both conditioned freezing and fear-potentiated startle in a context paired previously with foot shock, relative to a context in which foot shock had never been presented. Post-training lesions of the central nucleus of the amygdala completely blocked both contextual freezing and fear-potentiated startle. Post-training lesions of the dorsal hippocampus attenuated contextual freezing, consistent with previous reports in the literature; however, these same lesions had no effect on fear-potentiated startle, suggesting preserved contextual fear. These results suggest that lesions of the hippocampus disrupt the freezing response but not contextual fear itself.  相似文献   

13.
M. Kim and M. Davis (see record 1994-28571-001) previously reported that electrolytic lesions of the central nucleus of the amygdala, made 6 or 30 days after training, complctcly blockcd the expression of fear potentiated startle in rats. The present study shows that excitotoxic lesions of the basolateral amygdala also block fear-potentiated startle and do so whether the lesions are made soon (i.e., 6 days) or long (i.e., 30 days) after training. The relevance of these findings to various theories of amygdala function is discussed. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

14.
Cocaine's effects on fear extinction and on the shock-sensitization of acoustic startle were examined. Following fear acquisition, rats exposed to the nonreinforced CS after cocaine administration demonstrated significant levels of fear-potentiated startle when evaluated in the drug-free state. The CS also increased startle amplitudes in subjects extinguished and tested with cocaine, indicating that mechanisms other than state-dependent learning are involved in the extinction deficit. The presentation of 10 footshocks augmented acoustic startle, and the shock enhancement was unaffected by cocaine preexposure. These data indicate that the aversive consequences of footshock relevant to the acquisition of conditional fear are not sensitized by the drug. It was suggested that cocaine reinforces fear responding to a threatening stimulus. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

15.
The present study asked whether partial amygdala kindling would affect the expression of conditioned fear-potentiated startle. Rats were conditioned to be fearful of a light. They were then stimulated bilaterally in the amygdala or hippocampus on 2 consecutive days (partial kindling). Rats were tested 24 hr later for fear-potentiated startle. Amygdala-kindled rats had exaggerated fear-potentiated startle compared to sham-kindled rats. Hippocampus-kindled rats also displayed fear-potentiated startle. but no greater than that of sham-kindled rats. Partial amygdala kindling induced c-fos messenger RNA (mRNA) expression, a marker for neuronal activation, throughout the limbic and neocortices. In contrast, partial hippocampus kindling induced c-fos mRNA in the hippocampus only. The data suggest that kindled-induced hyperexcitability of the amygdala and limbic cortices produced exaggerated conditioned fear-potentiated startle. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

16.
Emotional events often lead to particularly strong memory formation. Corticosterone, the final product of hypothalamic-pituitary-adrenal (HPA)-axis activation, has been suggested to play a critical role in this effect. Although a great deal of work has implicated the amygdala as a necessary structure for the effects of corticosterone, other studies have suggested a critical role for the hippocampus in determining the involvement of corticosterone. The current experiments examined this question by disrupting corticosterone synthesis with administration of metyrapone (25 or 100 mg/kg) prior to training in either dorsal hippocampus-independent delay fear conditioning or dorsal hippocampus-dependent trace fear conditioning. Metyrapone administration 2 hrs prior to training significantly attenuated corticosterone secretion during training, but these effects were transient as corticosterone levels were similar to control subjects following the test session. As hypothesized, only trace fear conditioning was impaired. This suggests that only fear conditioning tasks that are dependent on the dorsal hippocampus require HPA-axis activation in order to be learned. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

17.
Destroyed cell bodies in the lateral and basolateral amygdaloid nuclei by local infusion of N-methyl-{d}-aspartate. Adjacent areas, such as the central amygdaloid nucleus, were largely spared. Lesions were carried out before training and testing (Exp 1) or after training but before testing (Exp 2). In both cases, the lesions completely blocked fear-potentiated startle (increased acoustic startle in the presence of a light previously paired with footshock). They also blocked increased startle after a series of footshocks, provided they damaged the most anterior part of the basolateral nucleus. It is suggested that the lateral or basolateral amygdaloid nuclei (or both) relay visual information to the central amygdaloid nucleus, which is also critical for fear-potentiated startle. In addition, activation of the most anterior part of the basolateral nucleus may be critical for processing shock information during fear conditioning. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

18.
The whole-body acoustic startle response is a short-latency reflex mediated by a relatively simple neural circuit in the lower brainstem and spinal cord. The amplitude of this reflex is markedly enhanced by moderate fear levels, and less effectively increased by higher fear levels. Extensive evidence indicates that the amygdala plays a key role in the potentiation of startle by moderate fear. More recent evidence suggests that the periaqueductal gray is involved in the loss of potentiated startle at higher levels of fear. The influence of both structures may be mediated by anatomical connections with the acoustic startle circuit, perhaps at the level of the nucleus reticularis pontis caudalis. The present chapter reviews these data.  相似文献   

19.
We previously demonstrated that desflurane and two nonimmobilizers dose-dependently decrease learning and memory in rats. This suggests that although they do not suppress movement in response to noxious stimuli, nonimmobilizers act like inhaled anesthetics in their effects on learning and memory. Like most conventional anesthetics, nonimmobilizers have a greater affinity for lipid than for aqueous phases. In the present study, we examined the effect of ethanol on learning and memory to test the hypothesis that a large part of the capacity of anesthetics to affect learning depends on an action on a lipid (nonpolar) phase. Unlike volatile anesthetics and nonimmobilizers, ethanol has a greater affinity for water than for lipids. Thus, if our hypothesis is correct, ethanol should be relatively less potent in its suppression of memory. Rats receiving various doses of ethanol were conditioned to fear a light followed by a footshock. Fear conditioning to the light was subsequently assessed by measurement of potentiation of the acoustic startle reflex in the presence, compared with the absence, of light. Ethanol up to 0.54 minimum alveolar anesthetic concentration (MAC) did not abolish fear, but 0.82 MAC ethanol did abolish learning. Expressed as a fraction of MAC or predicted MAC, ethanol is less potent than desflurane or the nonimmobilizer 1,2-dichlorohexafluorocyclobutane in suppressing learning. This finding is consistent with the hypothesis that the capacity of anesthetics and nonimmobilizers to impair learning and memory depends mostly on an action at a nonpolar site. IMPLICATIONS: Abolition of learning and memory is an important property of inhaled anesthetics. This effect primarily results from an action at a lipid (nonpolar) site, rather than a polar site or a water-lipid interface.  相似文献   

20.
Lesions of the amygdala block the expression of fear-potentiated startle following either moderate or extensive light?+?shock training. The present experiment assessed whether lesions of the amygdala would also block the expression of conditioned inhibition of fear. Rats were given conditioned inhibition training in which a light was paired with shock and a noise and light compound was presented in the absence of shock. Then half of the rats were given bilateral electrolytic lesions of the amygdala and the remaining rats were sham operated. Lesions of the amygdala blocked the expression of fear-potentiated startle to the light. To assess whether conditioned inhibition was disrupted, rats were retrained with light?+?shock pairings with no further conditioned inhibition training. Amygdala lesioned rats reacquired fear-potentiated startle to the light (Kim & Davis, 1993). Importantly, the noise conditioned inhibitor retained its ability to inhibit fear-potentiated startle to the retrained light. These results indicate that areas of the amygdala critical for initial performance of fear-potentiated startle are not critical for the expression of conditioned inhibition. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号