共查询到14条相似文献,搜索用时 93 毫秒
1.
2.
3.
在联合交互式多模型概率数据关联思想的基础上,将自适应滤波算法应用到概率数据关联滤波器中,提出了一种适用于杂波环境机动目标跟踪的新算法-交互式自适应概率数据关联(Interactive Multiple Models Adaptive Probabilistic Data Association-IMM-APDA)算法,避免了模型选取的不确定性,扩大了机动目标的跟踪范围,实现了杂波环境中对目标较高精度的状态估计.理论分析与仿真结果验证了该算法的优越性,提高了目标跟踪精度. 相似文献
4.
基于粒子滤波的交互式多模型多机动目标跟踪 总被引:1,自引:0,他引:1
针对交互式多模型联合概率数据关联滤波算法(IMM-JPDAF)在非线性情况下跟踪精度低,并不适用于非高斯问题的情况,提出了一种基于粒子滤波的交互式多模型多机动目标跟踪算法;将交互式多模型联合概率数据关联(IMM-JPDA)与粒子滤波相结合,在交互式多模型联合概率数据关联的框架下,各模型采用粒子滤波算法处理非线性非高斯问题,避免了噪声的高斯假设和非线性部分的线性化误差。仿真结果表明,IMM-JPDA-PF算法的跟踪性能明显优于IMM-JPDAF算法,能够对杂波环境中的多机动目标进行有效跟踪。 相似文献
5.
针对密集杂波环境下对多个高机动并有轨迹交叉的目标进行跟踪的问题,由于交互式多模型联合概率数据关联算法在目标密集和多模型情况下会出现计算组合爆炸的情况,提出了一种结合交互式多模型算法IMM和简化的联合概率数据关联算法Cheap JPDA的自适应跟踪算法.Cheap JPDA算法节省了JPDA算法中确认矩阵的拆分过程,降低关联概率计算难度及计算量.通过Monte Carlo仿真表明,算法能够很好的实现机动目标的跟踪性能,从而说明了算法的有效性. 相似文献
6.
杂波下的机动目标跟踪的综合概率数据关联(IPDA)算法是在概率数据关联(PDA)算法的思想基础上引入目标存在及可观测概率所形成的.本文进一步通过引入自适应调整因子,提出了针对强机动目标跟踪的自适应IPDA算法(CIPDA),并通过仿真论证,与传统的IPDA相比,CIPDA提高了对强机动目标跟踪的稳定性和精确度. 相似文献
7.
本文给出了一种基于平方根中心差分卡尔曼滤波(sRcDKF)的交互式多模型-概率数据关联(IMMPDA)算祛。在杂波环境下,该算法较好的解决了非线性条件下机动目标跟踪的问题,可获得比基于扩展卡尔曼滤波(EKF)的IMMPDA算法更好的数值稳定性、计算精度和收敛速度,还避免了复杂的Jacobi矩阵运算;本文大量Monte Carlo仿真进一步验证了该算法的可行性和有效性。 相似文献
8.
该文提出利用一种最大似然自适应门限的快速算法,该算法首先利用自适应的对观测进行门限处理,然后仅利用处于门限内的有效观测进行GM-CPHD算法的更新步计算,大大降低了算法的计算复杂度。 相似文献
9.
10.
11.
冯洋 《计算机与数字工程》2011,39(4):132-133,149
针对在云天背景下运动的红外弱小目标,从数据关联的角度,利用联合概率数据关联算法实现多个红外弱小目标的跟踪.实验结果表明,在杂波环境下,联合概率数据关联算法可以稳健地跟踪多个红外弱小目标的目标状态,跟踪效果好. 相似文献
12.
一种机动目标的PMHT跟踪算法 总被引:1,自引:0,他引:1
在多目标跟踪中一些传统关联算法的计算负荷是和目标数目及量测个数呈指数型关系增长,概率多假设跟踪算法(PMHT)很好地解决了这一问题;通过将机动输入项建模为马尔可夫过程,提出了一种推广的PMHT算法(EPMHT)以解决机动多目标跟踪问题;仿真结果表明该算法是有效的. 相似文献
13.
针对现有多机动目标跟踪算法精度低、计算量大、约束条件苛刻等问题,本文将高斯混合概率假设密度(Gaussian Mixture PHD,GM-PHD)滤波器和交互式多模型(Interacting Multiple Model,IMM)相结合,提出交互式多模型GM-PHD(Interacting Multiple Mode... 相似文献
14.
在弹道目标跟踪精度优化的研究中,机动再入目标高速的运动特性与复杂的受力环境,使得单一的运动模型与标准的交互式多模型算法不能真实反映其运动状况,而导致跟踪误差较大.为了提高跟踪精度,引入强跟踪滤波器的交互式多模型(IMM)算法,并将“当前”统计模型(CS)引入到交互式多模型算法中,提出CS_STF_IMM算法.通过“当前”统计模型对强机动的适应性与强跟踪滤波器关于模型失配的鲁棒性提高跟踪的精度与稳定度.仿真结果表明,改进算法在对机动再入弹道目标跟踪时具有良好的跟踪效果,并且稳定性高. 相似文献