首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. During cardiac surgery, the heart is arrested and protected by hyperkalaemic cardioplegia. The coronary endothelium may be damaged by ischaemia-reperfusion and cardioplegia. Subsequently, this may affect cardiac function immediately after cardiac surgery and cause mortality and morbidity. 2. We investigated coronary endothelium-smooth muscle interaction after exposure to depolarizing (hyperkalaemic; K+ 20 or 50 mmol/L) and hyperpolarizing (the K+ channel opener aprikalim) cardioplegia and organ preservation solution (University of Wisconsin (UW) solution). Endothelium-dependent relaxation and hyperpolarization of the coronary smooth muscle were studied in the porcine and human large conductance and micro-coronary arteries. Intracellular free calcium concentration in endothelial cells was also measured. 3. The endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation to A23187, bradykinin, and substance P in arteries contracted by either U46619 (10 nmol/L) or K+ (25 mmol/L) was reduced after exposure to either high K+ or UW solution, but was maximally preserved after exposure to aprikalim. The hyperpolarization of the membrane potential in response to the above endothelium-derived relaxing factor stimuli was also reduced by exposure to depolarizing cardioplegia. Studies in microcoronary arteries are in accordance with findings in large arteries. The intracellular free calcium concentration remained unchanged after exposure to hyperkalaemia. 4. We concluded that: (i) during cardiac surgery, the function of coronary circulation may be changed due to exposure to depolarizing cardioplegia or preservation solutions; (ii) the functional change in the coronary circulation is related to the altered interaction between the endothelium and smooth muscle; (iii) depolarizing (hyperkalaemia) cardioplegia or hyperkalaemic organ preservation solutions affect endothelium-smooth muscle interaction through the EDHF pathway; (iv) EDHF relaxes the porcine large and microcoronary arteries through multiple K+ channels; and (v) that hyperpolarizing vasodilators (K+ channel openers) may protect EDHF-mediated endothelial function when used as cardioplegia.  相似文献   

2.
AM Jayawant  RJ Damiano 《Canadian Metallurgical Quarterly》1998,66(4):1329-35; discussion 1335-6
BACKGROUND: Our laboratory has shown that the potassium-channel opener pinacidil is an effective cardioplegic agent. A theoretical benefit of cardioplegia with potassium-channel openers is that it arrests the heart at hyperpolarized membrane potentials, a state of minimal metabolic requirement. This study was designed to examine another nondepolarizing agent, adenosine, and to test the hypothesis that it could provide comparable cardioprotection or augment potassium-channel opener cardioplegia. METHODS: Using the blood-perfused Langendorff technique, isolated rabbit hearts were arrested for 30 minutes of global normothermic ischemia. Cardioplegia consisted of either Krebs-Henseleit solution alone (control) or with pinacidil (50 micromol/L), adenosine (200 micromol/L to 1 mmol/ L), or pinacidil + adenosine (200 micromol/L). Recovery of developed pressure and coronary flow were recorded. RESULTS: Postischemic functional recovery for control, pinacidil, adenosine, and adenosine + pinacidil groups was 44.1%+/-3.4%, 59.5%+/-5.2% (p < 0.05 versus control), 37.0%+/-4.5%, and 56.0%+/-2.9%, respectively. CONCLUSIONS: Adenosine, alone or as adjunct to pinacidil cardioplegia, was not an effective cardioplegic agent, despite shorter times to electromechanical arrest than control. The ineffectiveness of adenosine suggests that the cardioprotective properties of potassium-channel openers involve mechanisms other than the avoidance of membrane depolarization.  相似文献   

3.
BACKGROUND: The technique of intermittent antegrade warm blood cardioplegia (IAWBC) exposes the heart to brief periods of normothermic ischemia. This may impair endothelial function in coronary arteries. METHODS: Three cardioplegic technique were tested in porcine hearts arrested for 32 to 36 minutes and reperfused for 30 minutes: IAWBC, antegrade cold blood cardioplegia (ACBC), and antegrade cold crystalloid cardioplegia (ACCC). In the hearts arrested with IAWBC, three different intervals of ischemia were used: three 10-minute intervals (IAWBC1), two 15-minute intervals (IAWBC2), and one 30-minute interval (IAWBC3). Rings from the coronary arteries were used to evaluate in vitro the contractile responses to U46619 and the relaxant responses to bradykinin, A23187, and sodium nitroprusside. RESULTS: All six groups (treatment groups and control group) displayed similar responses to U46619 (30 nmol/L) and nitroprusside. In the IAWBC1, IAWBC2, AND ACBC groups, endothelium-dependent relaxations to bradykinin and A23187 were preserved compared with controls, whereas those of the ACCC and IAWBC3 groups were significantly impaired (bradykinin: control, 8.72 +/- 0.07; IAWBC1, 8.73 +/- 0.03; IAWBC2, 8.65 +/- 0.05; IAWBC3, 8.30 +/- 0.07 [p < 0.05]; ACBC, 8.50 +/- 0.03; ACCC, 8.25 +/- 0.09 [p < 0.05]; A23187: control, 7.07 +/- 0.08; IAWBC1, 7.07 +/- 0.06; IAWBC2, 7.04 +/- 0.03; IAWBC3, 6.64 +/- 0.01 [p < 0.05]; ACBC, 6.80 +/- 0.05; ACCC, 6.60 +/- 0.08 [p < 0.05]; nitroprusside: control, 6.19 +/- 0.1; IAWBC1, 6.19 +/- 0.07; IAWBC2, 6.03 +/- 0.03; IAWBC3, 6.08 +/- 0.05; ACBC, 6.04 +/- 0.2; ACCC, 6.05 +/- 0.03; all values are expressed as the negative logarithm of the concentration producing 50% of the maximal response). CONCLUSIONS: Myocardial preservation with IAWBC with ischemic intervals of 15 minutes or shorter does not alter the endothelium-dependent relaxation to bradykinin or A23187 in porcine coronary arteries, but these responses are significantly impaired by ACCC and IAWBC with an ischemic interval of 30 minutes.  相似文献   

4.
BACKGROUND: This study was designed to evaluate the adenosine-triphosphate-sensitive potassium channel opener pinacidil as a blood cardioplegic agent. METHODS: Using a blood-perfused, parabiotic, Langendorff rabbit model, hearts underwent 30 minutes of normothermic ischemia protected with blood cardioplegia (St. Thomas' solution [n = 8] or Krebs-Henseleit solution with pinacidil [50 micromol/L, n = 81) and 30 minutes of reperfusion. Percent recovery of developed pressure, mechanical arrest, electrical arrest, reperfusion ventricular fibrillation, percent tissue water, and myocardial oxygen consumption were compared. RESULTS: The percent recovery of developed pressure was not different between the groups (52.3 +/- 5.9 and 52.8 +/- 6.9 for hyperkalemic and pinacidil cardioplegia, respectively). Pinacidil cardioplegia was associated with prolonged electrical and mechanical activity (14.4 +/- 8.7 and 6.1 +/- 3.9 minutes), compared with hyperkalemic cardioplegia (1.1 +/- 0.6 and 1.1 +/- 0.6 minutes, respectively; p < 0.05). Pinacidil cardioplegia was associated with a higher reperfusion myocardial oxygen consumption (0.6 +/- 0.1 versus 0.2 +/- 0.0 mL/100 g myocardium/beat; p < 0.05) and a higher percent of tissue water (79.6% +/- 0.7% versus 78.6% +/- 1.2%; p < 0.05). CONCLUSIONS: Systolic recovery was not different between groups, demonstrating comparable effectiveness of pinacidil and hyperkalemic warm blood cardioplegia.  相似文献   

5.
Epoxyeicosatrienoic acids (EETs) are potent endothelium-derived vasodilators formed from cytochrome P-450 metabolism of arachidonic acid. EETs and their diol products (DHETs) are also avidly taken up by endothelial cells and incorporated into phospholipids that participate in signal transduction. To investigate the possible functional significance of EET and DHET incorporation into cell lipids, we examined the capacity of EETs and DHETs to relax porcine coronary arterial rings and determined responses to bradykinin (which potently activates endothelial phospholipases) before and after incubating the rings with these eicosanoids. 14,15-EET and 11,12-EET (5 mumol/L) produced 75 +/- 9% and 52 +/- 4% relaxation, respectively, of U46619-contracted rings, whereas 8,9-EET and 5,6-EET did not produce significant relaxation. The corresponding DHET regioisomers produced comparable relaxation responses. Preincubation with 14,15-EET, 11,12-EET, 14,15-DHET, and 11,12-DHET augmented the magnitude and duration of bradykinin-induced relaxation, whereas endothelium-independent relaxations to aprikalim and sodium nitroprusside were not potentiated. Pretreatment with 2 mumol/L triacsin C (an inhibitor of acyl coenzyme A synthases) inhibited [3H]14,15-EET incorporation into endothelial phospholipids and blocked 11,12-EET- and 14,15-DHET-induced potentiation of relaxation to bradykinin. Exposure of [3H]14,15-EET-labeled endothelial cells to the Ca2+ ionophore A23187 (2 mumol/L) resulted in a 4-fold increased release of EET and DHET into the medium. We conclude that incorporation of EETs and DHETs into cell lipids results in potentiation of bradykinin-induced relaxation in porcine coronary arteries, providing the first evidence that incorporated EETs and DHETs are capable of modulating vascular function.  相似文献   

6.
Endothelial cells produce C-type natriuretic peptide (CNP), which has been proposed as an endothelium-derived hyperpolarizing factor. In porcine coronary arteries, we investigated the vasodilatory effects of CNP and compared them with endothelium-dependent relaxations and hyperpolarizations to bradykinin. Isolated epicardial porcine coronary arteries were studied in organ chambers, and concentration-response curves to CNP and bradykinin were obtained. Membrane potential was measured in endothelial cells and smooth muscle of intact porcine coronary arteries during stimulation with CNP or bradykinin. In precontracted porcine coronary arteries with or without endothelium, CNP (10[-10]-10[-6] M) evoked relaxations (maximum, 42 +/- 4%) smaller than those evoked by bradykinin (100 +/- 1%), blunted in preparations contracted by KCl instead of U46619 (9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F2alpha; p < 0.05) and unaffected by inhibition of NO synthase (NS). CNP evoked hyperpolarization of vascular smooth muscle of similar magnitude in endothelium-intact (-4.4 +/- 1 mV) and endothelium-denuded (-4.6 +/- 1 mV) porcine coronary arteries. Bradykinin (10[-10]-10[-6] M) evoked concentration-dependent relaxations in preparations with endothelium only. Although atrial natriuretic peptide-receptor antagonist HS-142-1 (25 microM) slightly reduced the sensitivity to bradykinin (log shift at IC50, twofold; p < 0.05), it had no effect on the maximal response to bradykinin. Inhibition of NO synthase partially attenuated, whereas high potassium chloride (30 mM) markedly inhibited relaxations to bradykinin (p < 0.05). Hyperpolarization to bradykinin was much more pronounced than that to CNP (-17 +/- 3 mV; p < 0.05 vs. CNP) and was observed in endothelium-intact preparations only and unaffected by HS-142-1. In conclusion, in contrast to bradykinin, CNP induces endothelium-independent and weaker relaxation and hyperpolarization of coronary artery vascular smooth muscle, suggesting that CNP is an unlikely mediator of endothelium-dependent hyperpolarization of porcine coronary arteries.  相似文献   

7.
BACKGROUND: Little information exists regarding development of vasomotor control mechanisms during coronary collateral artery maturation. Therefore, we studied endothelium-dependent relaxation of canine collateral arteries isolated 2, 4, and 9 months after placement of an ameroid occluder around the proximal left circumflex coronary artery. RESULTS: Collateral arteries isolated after 2 months exhibited markedly reduced endothelium-dependent relaxation in response to acetylcholine (ACh; 10(-10) to 10(-4) mol/L) and bradykinin (BK; 10(-11) to 10(-6) mol/L) compared with relaxation of noncollateral coronary arteries (P<0.01). In contrast, endothelium-independent relaxation of collateral arteries to nitroprusside was only slightly reduced compared with relaxation of noncollateral arteries (P<0.05). Endothelium-dependent relaxation of collateral arteries isolated after 4 and 9 months was increased significantly, to the extent that relaxation to ACh and BK was not significantly different between collateral and noncollateral arteries at these periods. Inhibition of nitric oxide synthesis with NT-nitro-L-arginine methyl ester (L-NAME; 100 micromol/L) markedly inhibited ACh-induced relaxation in all noncollateral arteries and in collateral arteries isolated after 9 months. However, neither L-NAME nor indomethacin (5 micromol/L) alone inhibited ACh-mediated relaxation of collateral arteries isolated after 4 months. ACh-induced relaxation of these collateral arteries was only inhibited when arteries were preconstricted with 30 mmol/L K+ and pretreated with L-NAME and indomethacin (ie, when synthesis/effects of nitric oxide, prostaglandins, and endothelium-derived hyperpolarizing factor were inhibited). CONCLUSIONS: Development of endothelium-dependent relaxation in canine coronary collateral arteries is not complete after 2 months. After 4 months, endothelium-dependent relaxation of collateral arteries is similar to relaxation of noncollateral arteries, but the relaxation exhibits decreased dependence on synthesis of nitric oxide and increased involvement of prostaglandins and endothelium-derived hyperpolarizing factor(s). After 9 months of development, collateral arteries exhibit normal nitric oxide-dependent relaxation, similar to noncollateral arteries.  相似文献   

8.
1. The effects of the nitric oxide (NO) synthase inhibitor, NG-nitro-L-arginine (L-NOARG), the NO scavenger, oxyhaemoglobin (HbO) and high extracellular K+ upon endothelium-dependent relaxation to bradykinin were investigated in human isolated small coronary arteries. 2. Endothelium-dependent relaxations to bradykinin were compared in vessels contracted to approximately 50% of their maximum contraction to 124 mM KCl Krebs solution, regardless of treatments, with the thromboxane A2 mimetic, U46619 and acetylcholine. All relaxations were expressed as percentage reversal of the initial level of active force. 3. L-NOARG (100 microM) caused a small but significant, 12% (P < 0.01), decrease in the maximum relaxation (Rmax: 91.5 +/- 5.4%) to bradykinin but did not significantly affect the sensitivity (pEC50: 8.08 +/- 0.17). Increasing the concentration of L-NOARG to 300 microM had no further effect on the pEC50 or Rmax to bradykinin. HbO (20 microM) and a combination of HbO (20 microM) and L-NOARG (100 microM) reduced Rmax to bradykinin by 58% (P < 0.05) and 54% (P < 0.05), respectively. HbO (20 microM) and L-NOARG (100 microM, combined but not HbO (20 microM) alone, caused a significant 11 fold (P < 0.05) decrease in sensitivity to bradykinin. HbO (20 microM) decreased the sensitivity to the endothelium-independent NO donor, S-nitroso-N-acetylpenicillamine (SNAP), approximately 17 fold (P < 0.05). 4. Raising the extracellular concentration of K+ isotonically to 30 mM, reduced the Rmax to bradykinin from 96.6 +/- 3.1% to 43.9 +/- 10.1% (P < 0.01) with no significant change in sensitivity. A combination of HbO, L-NOARG and high K+ (30 mM) abolished the response to bradykinin. High K+ did not change either the sensitivity or maximum relaxation to SNAP. 5. In conclusion, L-NOARG does not completely inhibit endothelial cell NO synthesis in human isolated small coronary arteries. By comparison, HbO appeared to block all the effects of NO in this tissue and revealed that most of the relaxation to bradykinin was due to NO. The non-NO -dependent relaxation to bradykinin in the human isolated small coronary arteries appeared to be mediated by a K(+)-sensitive vasodilator mechanism, possibly endothelium-derived hyperpolarizing factor (EDHF).  相似文献   

9.
BACKGROUND: Pharmacologic treatment using potassium-channel openers (PCOs) before cardioplegic arrest has been demonstrated to provide beneficial effects on left ventricular performance with subsequent reperfusion and rewarming. However, the PCO treatment interval necessary to provide protective effects during cardioplegic arrest remains to be defined. The present study was designed to determine the optimum period of PCO treatment that would impart beneficial effects on left ventricular myocyte contractility after simulated cardioplegic arrest. METHODS: Left ventricular porcine myocytes were assigned randomly to three groups: (1) normothermic control = 37 degrees C for 2 hours; (2) cardioplegia = K+ (24 mEq/L) at 4 degrees C for 2 hours followed by reperfusion and rewarming; and (3) PCO and cardioplegia = 1 to 15 minutes of treatment with the PCO aprikalim (100 micromol/L) at 37 degrees C followed by hypothermic (4 degrees C) cardioplegic arrest and subsequent rewarming. Myocyte contractility was measured after rewarming by videomicroscopy. A minimum of 50 myocytes were examined at each treatment and time point. RESULTS: Myocyte velocity of shortening was reduced after cardioplegic arrest and rewarming compared with normothermic controls (63+/-3 microm/s versus 32+/-2 microm/s, respectively; p < 0.05). With 3 minutes of PCO treatment, myocyte velocity of shortening was improved after cardioplegic arrest to values similar to those of normothermic controls (56+/-3 microm/s). Potassium channel opener treatment for less than 3 minutes did not impart a protective effect, and the protective effect was not improved further with more prolonged periods of PCO treatment. CONCLUSIONS: A brief interval of PCO treatment produced beneficial effects on left ventricular myocyte contractile function in a simulated model of cardioplegic arrest and rewarming. These results suggest that a brief period of PCO treatment may provide a strategy for myocardial protection during prolonged cardioplegic arrest in the setting of cardiac operation.  相似文献   

10.
Myocardial dysfunction after cardiac operations might be influenced by altered myocardial perfusion in the postoperative period. To investigate possible alterations in vascular reactivity, in vitro coronary microvascular responses were examined after ischemic cardioplegia with use of a porcine model of cardiopulmonary bypass. Since myocardial perfusion is primarily regulated by arteries less than 200 microns in diameter, these vascular segments were examined. After 1 hour of ischemic arrest with cold crystalloid cardioplegia and 1 hour of reperfusion, microvessels (100 to 190 microns in diameter) were pressurized in a no-flow state, preconstricted by 30% to 60% of the baseline diameter with acetylcholine, and examined with video microscopic imaging and electronic dimension analysis. Endothelium-dependent relaxations to bradykinin (55% +/- 13% versus 99% +/- 1% = maximum relaxation of the preconstricted diameter in cardioplegia-reperfusion vessels versus control vessels, respectively; p < 0.05) and the calcium ionophore A 23187 (33% +/- 6% versus 90% +/- 4%; p < 0.05) were markedly impaired while endothelium-independent relaxation to sodium nitroprusside was similar to control value. After 1 hour of ischemic cardioplegia without reperfusion, endothelium-dependent relaxation was only slightly affected. Transmission electron microscopy showed minimal endothelial damage after ischemic cardioplegia and reperfusion. These findings have important implications regarding coronary spasm and cardiac dysfunction after cardiac operations.  相似文献   

11.
AIMS: Potassium channel openers (KCOs) are of potential therapeutic value. Little is known about the effect of these drugs on human conduit arteries used as coronary bypass grafts. The purpose of this study was to determine the effect of the KCO aprikalim (RP52891) on human arteries used as coronary bypass grafts with emphasis on the possible difference in the inhibitory effect on depolarizing agent-mediated rather than receptor-mediated contraction. METHODS: Human internal mammary artery segments (IMA, n = 88) taken from 28 patients were studied. Concentration-relaxation curves for aprikalim were established in IMA precontracted with three vasoconstrictors (K+, U46619, and phenylephrine). In IMA rings incubated with aprikalim (1 or 30 microM) for 10 min concentration-contraction curves for the three vasoconstrictors were constructed. RESULTS: Aprikalim-induced relaxation was less in K+ (37.3 +/- 6.4%) than in U46619 (80.2 +/- 7.7%, P=0.002), or phenylephrine (67.5 +/- 7.0%, P=0.038) -precontracted IMA. The EC50 for K+-(-5.40 +/- 0.12 log M) was significantly higher than that for phenylephrine (-6.43 +/- 0.30 log M, P=0.007) but not significant compared with that for U46619 (-5.81 +/- 0.11, P>0.05). Pretreatment with aprikalim depressed the contraction by phenylephrine from 140.6 +/- 27.6% to 49.3 +/- 14.1% (P=0.002) and shifted the EC50 11.0-fold higher in rings treated with 1 microM aprikalim (P=0.007). Treatment of aprikalim did not significantly reduce the K+ and U46619-induced contraction (P>0.05) but shifted the concentration-contraction curves rightward (2.8-fold higher for K+, P<0.05 and 2.2-fold higher for U46619, P<0.05). CONCLUSIONS: This study demonstrates that aprikalim has vasorelaxant effects in human conduit arteries used as coronary artery bypass grafts contracted by a variety of vasoconstrictors and this effect is vasoconstrictor-selective with greater potency for alpha1-adrenoceptor agonists than for depolarizing agent K+. These findings provide information on the possible use of this KCO in various clinical settings.  相似文献   

12.
BACKGROUND: The purpose of this study was to test the hypothesis that vasodilator responses of porcine coronary resistance arteries are increased by exercise training. METHODS AND RESULTS: Yucatan miniature swine were randomly divided into groups of exercise-trained (ET) and sedentary (SED) control pigs. ET pigs were placed on a progressive treadmill training program lasting 16 to 20 weeks, and SED pigs remained inactive during the same time period. Coronary resistance arteries 64 to 157 microns in diameter were isolated for in vitro evaluation of relaxation responses to the endothelium-independent dilators sodium nitroprusside (1 x 10(-10) to 1 x 10(-4) mol/L) and adenosine (1 x 10(-10) to 1 x 10(-5) mol/L) and to bradykinin (1 x 10(-13) to 3 x 10(-7) mol/L), an endothelium-dependent agent. Relaxation responses to adenosine and sodium nitroprusside were not altered by exercise training. Endothelium-dependent relaxation to bradykinin was enhanced in coronary resistance arteries from ET pigs (IC50: ET, 0.07 +/- 0.02 nmol/L; SED, 1.59 +/- 0.09 nmol/L). To determine whether prostanoids and/or the nitric oxide synthase pathway were involved in the ET-induced changes in bradykinin-induced vasodilation, responses to bradykinin were examined in coronary resistance arteries from both ET and SED pigs in the presence of indomethacin and in the presence of nitro-monomethyl L-arginine (L-NMMA). Both indomethacin and L-NMMA produced significant inhibition of the bradykinin-induced relaxation in vessels from both groups. Despite decreased bradykinin-induced relaxation after indomethacin, bradykinin-induced vasodilation was still enhanced in vessels from the ET group. L-NMMA caused greater inhibition of the bradykinin-induced relaxation in coronary resistance arteries from ET pigs relative to arteries from SED pigs and eliminated the training-induced enhancement of the bradykinin responses. CONCLUSIONS: These results suggest that exercise training enhances bradykinin-induced vasodilation through increased endothelium-derived relaxing factor/nitric oxide production by the L-arginine/nitric oxide synthase pathway.  相似文献   

13.
OBJECTIVE: To determine the effect of standard-dose trimethoprim-sulfamethoxazole on serum potassium concentration in hospitalized patients. DESIGN: Prospective chart review. SETTING: Community-based teaching hospital. PATIENTS: 105 patients with various infections were hospitalized and treated. Eighty patients treated with standard-dose trimethoprim-sulfamethoxazole (trimethoprim, < or = 320 mg/d; sulfamethoxazole, < or = 1600 mg/d) composed the treatment group; 25 patients treated with other antibiotic agents served as the control group. MEASUREMENTS: Serum sodium, potassium, and chloride concentrations; serum carbon dioxide content; anion gap; blood urea nitrogen level; and serum creatinine level. RESULTS: The serum potassium concentration in the treatment group (mean +/- SD) was 3.89 +/- 0.46 mmol/L (95% CI, 3.79 to 3.99 mmol/L), and it increased by 1.21 mmol/L (CI, 1.09 to 1.32 mmol/L) 4.6 +/- 2.2 days after trimethoprim-sulfamethoxazole therapy was initiated. Blood urea nitrogen levels increased from 7.92 +/- 5.7 mmol/L (CI, 6.67 to 9.16 mmol/L) to 9.2 +/- 5.8 mmol/L (CI, 7.9 to 10.5 mmol/L), and serum creatinine levels increased from 102.5 +/- 49.5 mumol/L (CI, 91.4 to 113.6 mumol/L) to 126.1 +/- 70.7 mumol/L (CI, 110.3 to 141.9 mumol/L). Patients with a serum creatinine level of 106 mumol/L (1.2 mg/dL) or more developed a higher peak potassium concentration (5.37 +/- 0.59 mmol/L [CI, 5.15 to 5.59 mmol/L]) than patients with a serum creatinine level of less than 106 mumol/L (4.95 +/- 0.48 mmol/L [CI, 4.80 to 5.08 mmol/L]). Patients with diabetes had a slightly higher peak potassium concentration (5.14 +/- 0.45 mmol/L [CI, 4.93 to 5.39 mmol/L]) than did patients without diabetes (5.08 +/- 0.59 mmol/L [CI, 4.93 to 5.23 mmol/L]), but the difference was not statistically significant. The serum potassium concentration in the control group was 4.33 +/- 0.45 mmol/L (CI, 4.15 to 4.51 mmol/L), and it decreased nonsignificantly over 5 days of therapy. CONCLUSIONS: Standard-dose trimethoprim-sulfamethoxazole therapy used to treat various infections leads to an increase in serum potassium concentration. A peak serum potassium concentration greater than 5.0 mmol/L developed in 62.5% of patients; severe hyperkalemia (peak serum potassium concentration > or = 5.5 mmol/L) occurred in 21.2% of patients. Patients treated with standard-dose trimethoprim-sulfamethoxazole should be monitored closely for the development of hyperkalemia, especially if they have concurrent renal insufficiency (serum creatinine level > or = 106 mumol/L).  相似文献   

14.
We studied the effect of pinacidil, a potassium-channel opener, on the hemodynamic, biochemical, and ultrastructural changes in rat hearts undergoing hypothermic cardioplegia. Fifty-four male Wistar rats weighing 250 to 300 g were used. Isolated hearts were prepared for modified Langendorff circulation in the working mode using modified Krebs-Henseleit bicarbonate solution bubbled with a 95% O2 and 5% CO2 gas mixture. Eighty minutes of cardioplegia at 25 degrees C was followed by normothermic reperfusion for 30 minutes. Pinacidil, 5, 10, or 50 mumol/L added to the cardioplegic solution, did not affect heart rate, but is significantly improved the recovery of aortic flow as compared with controls (88.1% +/- 4.3 [5 mumol/L]; 83.2% +/- 8.5% [10 mumol/L]; 90.3% +/- 5.3% [50 mumol/L] compared with 55.6 +/- 4.3% [control]; p < 0.05). Administration of pinacidil during reperfusion did not further enhance the recovery of aortic flow. The dose-response curve of aortic flow to the pinacidil concentrations was flat from 5 to 50 mumol/L. However, preservation of myocardial adenosine triphosphate and calcium concentrations and mitochondrial morphology suggested that the optimal concentration of pinacidil cardioplegia is 10 mumol/L.  相似文献   

15.
OBJECTIVE: Because C5a induces tissue injury by activating polymorphonuclear leukocytes, the hypothesis was that inhibition of C5a activity would reduce cardioplegia-related injury. METHODS: Pigs were placed on cardiopulmonary bypass. The hearts were arrested for 1 hour with hyperkalemic cardioplegia. Pigs were then separated from bypass, and the hearts were reperfused for 2 hours. Anti-porcine C5a monoclonal antibody (1.6 mg/kg, intravenously; n = 6) was administered 20 minutes before the onset of cardiopulmonary bypass. Six pigs received saline solution vehicle. Reactivity of coronary arterioles was studied in vitro with videomicroscopy. Microvessels from uninstrumented pigs served as controls for vascular studies. RESULTS: Endothelium-dependent relaxation to adenosine diphosphate (percent relaxation of precontraction) was reduced after cardioplegic reperfusion (63% +/- 14% vs 77% +/- 10% in control at 10 micromol/L; P =.01). This impairment in endothelium-dependent relaxation was improved with anti-porcine C5a monoclonal antibody (80% +/- 22%; P =.01 vs saline solution), as was the impaired endothelium-dependent relaxation to clonidine (64% +/- 12% control; 26% +/- 17% saline solution; 55% +/- 24% anti-porcine C5a monoclonal antibody at 10 micromol/L; P =.01 saline solution vs control or anti-porcine C5a monoclonal antibody). Myeloperoxidase activity was significantly decreased (0.2 +/- 0.2 units/g protein; P =.04) in the anti-porcine C5a monoclonal antibody group compared with 5.2 +/- 2.7 in the saline solution group. CH50 2 hours after bypass was not statistically different (0.57 +/- 0.41 unit and 0.65 +/- 0.41 unit, respectively) between the anti-porcine C5a monoclonal antibody and saline solution groups. Despite less myocardial polymorphonuclear leukocyte infiltration after C5a inhibition, maximum rate of rise of left ventricular pressure, percent segmental shortening, and blood flow through the left anterior descending coronary artery were similar in the anti-porcine C5a monoclonal antibody and saline solution groups. CONCLUSIONS: Inhibition of C5a limits neutrophil-mediated impairment of endothelium-dependent relaxation after cardiopulmonary bypass and cardioplegic reperfusion, but it has no effect on short-term myocardial functional preservation.  相似文献   

16.
BACKGROUND: Hyperkalemic cardioplegic solutions effectively arrest the heart, but may also induce intracellular Ca2+ loading and cellular hypercontracture, which could contribute to ventricular dysfunction associated with global surgical ischemia. Recently, it has been proposed that 17beta-estradiol may possess protective properties in the ischemic myocardium. The purpose of the present study was to examine the action of 17beta-estradiol on cardiac cells exposed to hyperkalemic stress. METHODS: Single ventricular cardiomyocytes, a preparation devoid of vascular and neuronal elements, were isolated from guinea pig hearts, loaded with a Ca2+-sensitive fluorescent probe, and imaged by digital epifluorescent microscopy. The emitted fluorescence of the probe, a measure of intracellular Ca2+ concentration, and cell length were simultaneously recorded during hyperkalemic challenge, in the absence or presence of 17beta-estradiol. RESULTS: In control cardiomyocytes, the cytosolic concentration of Ca2+ was 138+/-11 nmol/L and cell length 93+/-11 microm. Exposure to high K+ (+16 mmol/L KCl) significantly increased cytosolic Ca2+ to 2,191+/-87 nmol/L (p < 0.001), and produced cell shortening (length at 39+/-5 microm; p < 0.001). 17beta-Estradiol (10 micromol/L) acutely prevented high K+ to induce either intracellular Ca2+ loading (144+/-13 nmol/L, p < 0.001) or hypercontracture (91+/-10 microm, p < 0.001). Tamoxifen (10 micromol/L), an antiestrogen, abolished the protective effect of 17beta-estradiol. CONCLUSIONS: We conclude that 17beta-estradiol prevents hyperkalemia-induced Ca2+ loading and hypercontracture through a direct and tamoxifen-sensitive action in cardiomyocytes. This study raises the possibility that 17beta-estradiol should be considered as a cardioprotective adjunct toward a safer hyperkalemic cardioplegia.  相似文献   

17.
An endothelium-derived hyperpolarizing factor (EDHF) mediates a part of the vasodilatory action of bradykinin. A bioassay method was developed to investigate the properties of EDHF on bovine coronary arterial smooth muscle cells. Cannulated bovine coronary arteries with an intact endothelium that were treated with indomethacin and NG-nitro-L-arginine methyl ester served as the EDHF donor. The effect of the donor vessel perfusate was examined on a 240 pS single-channel calcium (Ca2+)-activated potassium (K+) current (KCa) and resting membrane potential in recipient coronary arterial smooth muscle cells. The open state probability (NPo) of the channel averaged 0.011 +/- 0.003 during basal perfusate flow. After stimulation of the donor vessels with bradykinin (10(-10)-10(-6) M), the perfusate induced a 1.2- to 5-fold increase in the NPo (n = 7, p < 0.001). This increase in channel activity was attenuated by either removing the endothelium of the donor arterial segment or upon inhibition of cytochrome P450 in the donor arterial segment with the combination of 17-octadecynoic acid and miconazole. The resting cell membrane averaged -60 +/- 2 mV, and hyperpolarized to -69 +/- 1.5 mV (n = 6, p < 0.05) in response to the perfusate following stimulation of the donor vessel with bradykinin. Addition of 14, 15-epoxyeicosatrienoic acid mimicked the effects of the perfusate and increased the NPo of the KCa channel from 0.01 +/- 0.001 to 0.05 +/- 0.001. These findings suggest that bradykinin stimulates the release of a transferable endothelial factor that activates KCa channels and hyperpolarizes coronary arterial smooth muscle cell membranes. These findings support the hypothesis that coronary arteries release an EDHF which is a cytochrome P450 metabolite of arachidonic acid.  相似文献   

18.
We assessed mechanisms of acetylcholine- and bradykinin-induced relaxations in human omental resistance vessels. Ring segments (approximately 200 microns normalized ID) were dissected from omental biopsies obtained from women at laparotomy (nonpregnant) or at cesarean delivery (pregnant) and were studied under isometric conditions in a Mulvany-Halpern myograph. All arginine vasopressin-preconstricted vessels relaxed in a strictly endothelium-dependent manner to acetylcholine and bradykinin; maximal relaxations were not decreased by either NG-nitro-L-arginine or indomethacin. By contrast, bradykinin failed to relax vessels that had been preconstricted with potassium gluconate. In the combined presence of NG-nitro-L-arginine and indomethacin, addition of charybdotoxin, a selective antagonist of some calcium-sensitive potassium channels, did not inhibit maximal bradykinin-induced relaxation. By contrast, addition of 10 mmol/L tetraethylammonium chloride abolished relaxation in vessels from nonpregnant women but not in vessels from gravidas. We conclude that bradykinin relaxes these human resistance arteries in an endothelium-dependent but predominantly nitric oxide- and prostanoid-independent manner; relaxation likely depends on the action of an endothelium-derived hyperpolarizing vasodilator. Furthermore, in striking contrast to mechanistic insights from animal studies, human pregnancy appears to augment a mechanism of endothelium-dependent relaxation in these vessels that is insensitive to the inhibitors noted above. Whether a similar novel vasodilator mechanism in vivo contributes to the physiological vasodilation that characterizes human gestation or whether failure of such a mechanism might lead to preeclampsia remains the subject of future study.  相似文献   

19.
CG Sobey  DD Heistad  FM Faraci 《Canadian Metallurgical Quarterly》1997,28(11):2290-4; discussion 2295
BACKGROUND AND PURPOSE: Relatively little is know regarding mechanisms by which reactive oxygen species produce dilatation of cerebral arterioles. The goal of this study was to test the hypothesis that vasodilator responses of cerebral arterioles to bradykinin, which produces endogenous generation of reactive oxygen species, involve activation of calcium-dependent potassium channels. METHODS: We used a cranial window in anesthetized rats to examine effects of catalase (which degrades hydrogen peroxide) on responses to bradykinin. In addition, we examined effects of tetraethylammonium (TEA) and iberiotoxin, inhibitors of calcium-dependent potassium channels, on responses of cerebral arterioles to hydrogen peroxide, bradykinin, and papaverine. RESULTS: In cerebral arterioles (baseline diameter = 40 +/- 1 microns) (mean +/- SE), hydrogen peroxide (10 and 100 mumol/L) produced concentration-dependent dilatation. TEA (1 mmol/L), an inhibitor of calcium-dependent potassium channels, produced marked inhibition of vasodilatation in response to hydrogen peroxide. For example, 100 mumol/L hydrogen peroxide dilated arterioles by 13 +/- 2% in the absence and 4 +/- 1% (P < .05 versus control) in the presence of TEA. Bradykinin (10 nmol/L to 1 mumol/L) also produced concentration-dependent dilatation of cerebral arterioles that was inhibited completely by catalase (100 U/mL). TEA or iberiotoxin markedly inhibited vasodilatation in response to bradykinin. For example, 100 nmol/L bradykinin dilated arterioles by 21 +/- 3% in the absence and 2 +/- 2% (P < .05 vs control) in the presence of iberiotoxin (50 nmol/L). CONCLUSIONS: These findings suggest that dilatation of cerebral arterioles in the rat in response to hydrogen peroxide, or hydrogen peroxide produced endogenously in response to bradykinin, is mediated by activation of calcium-dependent potassium channels. Thus, activation of potassium channels may be a major mechanism of dilatation in response to reactive oxygen species in the cerebral microcirculation.  相似文献   

20.
BACKGROUND: Cold cardioplegia can induce rapid cooling contracture. The relations of cardioplegia-induced cooling contracture to myocardial temperature or myocyte calcium are unknown. METHODS: Twelve crystalloid-perfused isovolumic rat hearts received three 2-minute cardioplegic infusions (1 mmol/L calcium) at 4 degrees, 20 degrees, and 37 degrees C in random order, each followed by 10 minutes of beating at 37 degrees C. Finally, warm induction of arrest by a 1-minute cardioplegic infusion at 37 degrees C was followed by a 1-minute infusion at 4 degrees C. Indo-1 was used to measure the intracellular Ca2+ concentration in 6 of these hearts. Additional hearts received hypoxic, glucose-free cardioplegia at 4 degrees or 37 degrees C. RESULTS: After 1 minute of cardioplegia at 4 degrees, 20 degrees, and 37 degrees C, left ventricular developed pressure rose rapidly to 54% +/- 3%, 43% +/- 3%, and 18% +/- 1% of its prearrest value, whereas the intracellular Ca2+ concentration reached 166% +/- 23%, 94% +/- 4%, and 37% +/- 10% of its prearrest transient. Coronary flow was 5.7 +/- 0.2, 8.7 +/- 0.3, and 12.6 +/- 0.6 mL/min, respectively. Warm cardioplegia induction at 37 degrees C reduced left ventricular developed pressure and [Ca2+]i during subsequent 4 degrees C cardioplegia by 16% (p = 0.001) and 34% (p = 0.03), respectively. Adenosine triphosphate and phosphocreatine contents were lower after 4 degrees C than after 37 degrees C hypoxic, glucose-free cardioplegia. CONCLUSIONS: Rapid cooling during cardioplegia increases left ventricular pressure, [Ca2+]i and coronary resistance, and is energy consuming. The absence of rapid cooling contracture may be a benefit of warm heart operations and warm induction of cardioplegic arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号