首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 394 毫秒
1.
Experiments were designed to determine whether the omega 3-unsaturated fatty acid eicosapentaenoic acid affects the production of nitric oxide evoked by interleukin-1 beta in cultured vascular smooth muscle cells. Incubation of cultured rat or human aortic smooth muscle cells with interleukin-1 beta evoked a time- and concentration-dependent release of nitrite, an oxidation product of nitric oxide. The exposure of cells to interleukin-1 beta in combination with eicosapentaenoic acid caused a significantly larger production of nitrite than that evoked by the cytokine alone. The potentiation by eicosapentaenoic acid was concentration-dependent. The production of nitrite evoked by equieffective concentrations of interleukin-1 beta in the presence and absence of eicosapentaenoic acid were inhibited to a similar extent by nitro L-arginine (an inhibitor of nitric oxide synthase), transforming growth factor beta 1, platelet-derived growth factorAB and thrombin. The addition of interleukin-1 beta-activated smooth muscle cells to suspensions of washed and indomethacin-treated platelets inhibited the aggregation caused by thrombin. The inhibitory effect was enhanced when the smooth muscle cells were exposed to the cytokine in the presence of eicosapentaenoic acid prior to the experiment. Smooth muscle cells exposed to interleukin-1 beta and eicosapentaenoic acid did not affect platelet aggregation in the presence of oxyhemoglobin or methylene blue. Untreated cells or cells exposed to the fatty acid alone did not have such effects. These observations suggest that eicosapentaenoic acid potentiates the production of nitric oxide evoked by interleukin-1 beta in vascular smooth muscle.  相似文献   

2.
Aspirin and sodium salicylate enhance to a similar extent the production of nitric oxide (NO) in cultured smooth muscle cells following stimulation by interleukin-1beta (IL-1beta). The similar potencies of aspirin and sodium salicylate indicate that acetylation of cellular macromolecules is not essential for the enhancement of NO production. The failure of added prostaglandin E2 (PGE2) or Thromboxane A2 (TXA2) to overcome the effects of aspirin or sodium salicylate indicates that these effects are not simply the result of inhibition of prostaglandin synthesis. The enhancement of NO production occurs dependent of the effects of these agents on induction of inducible nitric oxide synthase (iNOS) expression by IL-1beta. Aspirin and sodium salicylate enhance the induction of iNOS expression by IL-1beta. We previously reported that pretreatment of vascular smooth muscle cells (VSMCs) with high glucose decreased the response of the cells by IL-1beta, that is, the induction of iNOS expression and NO production. We investigated the effect of aspirin and sodium salicylate on the response by IL-1beta of VSMCs pretreated with high glucose (25 mM). Aspirin and sodium salicylate ameliorate the down-regulation of iNOS expression and the decrease of NO production caused by pretreatment with high glucose (25 mM). These results suggest a possible therapeutic role in atherosclerotic disease and diabetes mellitus for aspirin and sodium salicylate by enhancing the level of iNOS expression and NO production.  相似文献   

3.
The generation of nitric oxide is regulated by several factors, including the substrates and cofactors supplementation. Decreased expression and activity of nitric oxide synthase as well as diminished amount of L-arginine or enzyme cofactors results in the inhibition of nitric oxide generation in vascular wall cells. GTP cyclohydrolase 1 is a key enzyme involved in the synthesis of tetrahydrobiopterin, one of the most important cofactors of NO synthases. We have demonstrated that oxidized LDL inhibit not only inducible nitric oxide synthase gene expression but also GTP cyclohydrolase I gene expression in interleukin-1 beta activated rat vascular smooth muscle cells in vitro. It is postulated that diminished availability of tetrahydrobiopterin may additionally impair the generation of nitric oxide in atherosclerosis.  相似文献   

4.
OBJECTIVE: The adhesive interaction of monocytes and vascular smooth muscle cells (VSMCs) has been suggested to be a regulatory signal in the cellular activation that is involved in the pathogenesis of atherosclerosis. We investigated the effects of monocyte-VSMC interaction on inducible nitric oxide (NO) synthase expression. METHODS: NO production by the cultured cells was determined by measuring the nitrite content of the culture media using the Griess reagent. The expression of inducible NO synthase protein was assayed by Western blotting. RESULTS: Interleukin-1 beta (IL-1 beta) induced nitrite production by VSMCs in a time-dependent manner. The addition of the mouse monocyte cell line J774 to IL-1 beta-stimulated VSMCs further increased nitrite production in a monocyte number-dependent manner. Enhanced nitrite production by coculture was accompanied by increased inducible NO synthase protein accumulation. Addition of tumor necrosis factor-alpha (TNF-alpha) also enhanced IL-1 beta-induced nitrite production by VSMCs, but TNF-alpha showed no effect in the presence of monocytes. Coculture of monocytes and VSMCs in the presence of IL-1 beta secreted substantial amounts of TNF-alpha. The production of nitrite by coculture was markedly inhibited by an anti-TNF-alpha antibody. CONCLUSIONS: The present study revealed that direct cell-to-cell interaction between monocytes and VSMCs enhances NO production, suggesting an important role for their interaction in the pathogenesis of atherosclerosis.  相似文献   

5.
We have investigated the role of platelets in regulating the hemostatic and vasomotor properties of vascular smooth muscle. Experiments were performed to examine the effect of the releasate from activated platelets on the production of nitric oxide from interleukin-1 beta (IL-1 beta)-treated cultured rat aortic smooth muscle cells. Treatment of vascular smooth muscle cells with IL-1 beta resulted in significant accumulation of nitrite in the culture media and in marked elevation of intracellular cyclic guanosine monophosphate (GMP) levels. The releasate from collagen-aggregated platelets blocked the IL-1 beta-mediated production of nitrite and the accumulation of cyclic GMP in smooth muscle cells in a platelet number-dependent manner. In functional assays, the perfusates from columns containing IL-1 beta-treated smooth muscle cells relaxed detector blood vessels without endothelium and the addition of IL-1 beta-treated smooth muscle cells to suspensions of platelets inhibited their thrombin-induced aggregation. The simultaneous treatment of smooth muscle cells with IL-1 beta and the platelet releasate abolished both the vasorelaxing activities of the perfusates and the inhibition of platelet aggregation. Platelet releasates treated with a neutralizing antibody to platelet-derived growth factor (PDGF) failed to block IL-1 beta-induced nitric oxide production by the smooth muscle cells, as measured by both biochemical and functional assays. The platelet releasate from a patient with gray platelet syndrome likewise failed to block IL-1 beta-induced nitrite release by smooth muscle cells. These results demonstrate that platelets downregulate the production of nitric oxide by IL-1 beta-treated vascular smooth muscle cells through the release of PDGF. This effect may represent a novel mechanism by which platelets regulate vasomotor tone and thrombus formation at sites of vascular injury.  相似文献   

6.
7.
8.
Triptoquinone A (TQA), which is an anti-inflammatory constituent in plants, was studied for its suppressive effect on nitric oxide production by LPS. TQA significantly suppressed smooth muscle relaxation and increase in cyclic GMP levels by nitric oxide (NO) in an L-arginine-induced relaxation experiment. The mechanistic studies showed that TQA did not directly inhibit NO radicals and inducible nitric oxide synthase (iNOS) enzyme but suppressed IL-1 beta and iNOS mRNA expression by LPS. The suppression level of iNOS gene expression by TQA was comparable to that by dexamethasone. TQA may be a useful candidate for the development of a drug as a potent inhibitor of iNOS gene over-expression.  相似文献   

9.
Several compounds including lipopolysaccharide and sympathomimetics stimulate the expression of the inducible nitric oxide synthase in vascular smooth muscle cells. We evaluated the effect of clenbuterol on nitric oxide (NO) production by vascular smooth muscle cells of the rat aorta in culture. Wistar rats were divided into three diet groups (control, clenbuterol and washout). Aortic vascular smooth muscle cells from rats from these 3 diet groups were cultured in the presence and absence of lipopolysaccharide and/or beta-adrenoceptor agonists. NO release was measured by Griess reagent. Clenbuterol or salbutamol added to cells from control rats potentiated lipopolysaccharide-induced NO release. Cells from rats fed on clenbuterol, in a medium without beta-adrenoceptor agonists, showed a similar potentiation, even after a 10-day washout period. The addition of beta-adrenoceptor agonists to the latter cells did not increase NO production. NG-Nitro-L-arginine decreased nitrite production in lipopolysaccharide-stimulated cells. Our results demonstrate that dietary clenbuterol has a persistent 'ex vivo' effect on lipopolysaccharide-induced NO production by cultured vascular smooth muscle cells.  相似文献   

10.
11.
The endothelium plays an obligatory role in a number of relaxations of isolated arteries. These endothelium-dependent relaxations are due to the release by the endothelial cells of potent vasodilator substances [endothelium-derived relaxing factors (EDRF)]. The best characterized EDRF is nitric oxide (NO). Nitric oxide is formed by the metabolism of L-arginine by the constitutive NO synthase of endothelial cells. In arterial smooth muscle, the relaxations evoked by EDRF are explained best by the stimulation by NO of soluble guanylate cyclase that leads to the accumulation of cyclic GMP. The endothelial cells also release an unidentified substance that causes hyperpolarization of the cell membrane (endothelium-derived hyperpolarizing factor, EDHF). The release of EDRF from the endothelium can be mediated by both pertussis toxin-sensitive (alpha2-adrenergic activation, serotonin, thrombin, aggregating platelets) and insensitive (adenosine diphosphate, bradykinin) G-proteins. In blood vessels from animals with regenerated endothelium, and/or atherosclerosis, there is a selective loss of the pertussis-toxin sensitive mechanism of EDRF-release which favors the occurrence of vasospasm, thrombosis and cellular growth.  相似文献   

12.
Periapical granulomas contain a large number of T lymphocytes and monocytes/macrophages and a small number of B lymphocytes and polymorphonuclear leukocytes. Sections from eight periapical granulomas were stained by a variety of immunohistochemical methods. The vascular endothelial cells stained positively for intercellular adhesion molecule-1 and vascular cell adhesion molecule-1. Helper T cells were identified by immunostaining for CD4 and stained positively for interferon-gamma (IFN-gamma). However, CD4-positive T cells did not stain for interleukin-4 (IL-4). Monocytes/macrophages were identified by immunostaining for CD68 and stained positively for IL-1alpha or inducible nitric oxide synthase (iNOS). IL-1beta could not be detected in the same samples. No cytokine expression was observed in B cells identified by immunostaining for CD20. IFN-gamma- and iNOS-positive cells could not be detected in clinically healthy periodontal ligament being used as a negative control. These results suggest that the IFN-gamma-producing T cells and iNOS-positive cells may modulate the progress of disease in local inflammation sites such as in periapical granulomas.  相似文献   

13.
Inflammatory cytokines, such as interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF alpha), are known to activate sphingomyelinase (SMase) and nuclear factor-kappaB (NF-kappaB) in certain cell types, which also stimulate inducible nitric oxide synthase (iNOS) gene in vascular smooth muscle cells (VSMCs). However, it remains unknown whether the SMase pathway is involved in iNOS gene expression in VSMCs. Therefore, the present study was designed to examine whether SMase induces iNOS gene expression via the NF-kappaB activation pathway similar to that of IL-1beta and TNF alpha in cultured rat VSMCs. Neutral SMase, although less potently than IL-1beta and TNF alpha, stimulated nitrite/nitrate (NOx) production, and iNOS messenger RNA and protein expression, as assessed by Northern and Western blot analyses, respectively. Neutral SMase, IL-1beta, and TNF alpha activated NF-kappaB, as revealed by electrophoretic mobility shift assay, and its nuclear translocation, as demonstrated by immunocytochemical study. Neutral SMase potentiated NOx production, iNOS expression, and NF-kappaB activation stimulated by TNF alpha, but not by IL-1beta. Aldehyde peptide proteasome inhibitors completely blocked NOx production, iNOS expression, NF-kappaB activation, and its nuclear translocation induced by cytokines and neutral SMase. IL-1beta and TNF alpha, but not neutral SMase, caused a transient decrease in IkappaB-alpha protein levels, whereas IkappaB-beta protein expression was not affected by either agent. Proteasome inhibitors prevented cytokine-mediated IkappaB-alpha degradation. Several cell-permeable ceramide analogs (C2, C6, and C8), hydrolysis products of sphingomyelin, activated NF-kappaB less potently than neutral SMase, but had no effect on NOx production. These results demonstrate an essential role of NF-kappaB activation in mediation of neutral SMase-induced iNOS expression, but distinct from the proteasome-mediated IkappaB-alpha degradation by cytokines, suggesting the possible involvement of an additional signaling pathway(s).  相似文献   

14.
Studies in vitro suggested that inflammatory cytokines could cause myocardial dysfunction. However, the detailed mechanism for the cytokine-induced myocardial dysfunction in vivo remains to be examined. We thus examined this point in our new canine model in vivo, in which microspheres with and without IL-1beta were injected into the left main coronary artery. Left ventricular ejection fraction (LVEF) was evaluated by echocardiography for 1 wk. Immediately after the microsphere injection, LVEF decreased to approximately 30% in both groups. While LVEF rapidly normalized in 2 d in the control group, it was markedly impaired in the IL-1beta group even at day 7. Pretreatment with dexamethasone or with aminoguanidine, an inhibitor of inducible nitric oxide synthase, prevented the IL-1beta-induced myocardial dysfunction. Nitrotyrosine concentration, an in vivo marker of the peroxynitrite production by nitric oxide and superoxide anion, was significantly higher in the myocardium of the IL-1beta group than in that of the control group or the group cotreated with dexamethasone or aminoguanidine. There was an inverse linear relationship between myocardial nitrotyrosine concentrations and LVEF. These results indicate that IL-1beta induces sustained myocardial dysfunction in vivo and that nitric oxide produced by inducible nitric oxide synthase and the resultant formation of peroxynitrite are substantially involved in the pathogenesis of the cytokine-induced sustained myocardial dysfunction in vivo.  相似文献   

15.
In cultures of purified microglial cells and astrocytes from newborn rats, the immunocytochemical localization of interleukin-1 beta (IL-1 beta) and inducible nitric oxide synthase (iNOS) using recently developed antibodies, as well as the release of IL-1 beta and nitric oxide (NO), was studied following exposure of the cells to endotoxin [lipopolysaccharide (LPS)]. In the absence of LPS, IL-1 beta- and iNOS-immunoreactive microglial cells and IL-1 beta or NO release were not observed, whereas in the presence of the endotoxin, the production of NO and IL-1 beta by microglial cells dramatically exceeded their synthesis and release by astrocytes. Interestingly, microglial cells cultured for 4-8 days in the presence of astrocytes appeared to lose their ability to produce iNOS, whereas the release of IL-1 beta remained unaltered. Moreover, endotoxin-stimulated microglial cells appeared to regain their ability to synthesize iNOS following their separation from astrocytes. These data show that microglia are primarily responsible for NO and IL-1 beta production in mixed glial cell cultures upon endotoxin stimulation. Moreover, in the presence of astrocytes the induction of iNOS, but not that of IL-1 beta in microglial cells is gradually inhibited.  相似文献   

16.
17.
IL-18, a cytokine originally identified as IFN-gamma-inducing factor, is a member of the IL-1 family of proteins. Because IL-1alpha and IL-1beta are important mediators in the pathogenesis of arthritis, the present study addresses the expression of IL-18 and its role in regulating in articular chondrocytes. IL-18 mRNA was induced by IL-1beta in chondrocytes. Chondrocytes produced the IL-18 precursor and in response to IL-1 stimulation secreted the mature form of IL-18. Studies on IL-18 effects on chondrocytes showed that it inhibits TGF-beta-induced proliferation and enhances nitric oxide production. IL-18 stimulated the expression of several genes in normal human articular chondrocytes including inducible nitric oxide synthase, inducible cyclooxygenase, IL-6, and stromelysin. Gene expression was associated with the synthesis of the corresponding proteins. Treatment of normal human articular cartilage with IL-18 increased the release of glycosaminoglycans. These finding identify IL-18 as a cytokine that regulates chondrocyte responses and contributes to cartilage degradation.  相似文献   

18.
Interleukin-1 beta (IL-1 beta) significantly inhibits insulin secretion from glucose stimulated islet cells. The mechanism for this inhibition has been hypothesized to be due to stimulation of the inducible form of nitric oxide synthase and a resulting increase in nitric oxide (NO) concentration. Ways to block the effect of IL-1 beta have focused on blocking the binding of IL-1 beta to the IL-1 receptor and the use of antioxidants to neutralize increases in NO. This report focuses on a 33 residue peptide synthesized based on the C-terminal region of the IL-1 beta molecule, a reported binding site of the IL-1 beta molecule, and the redoxcycling antioxidant pyrroloquinoline quinone (PQQ). The 33 residue peptide did not function as an antagonist, but as a weak agonist. High concentrations of PQQ itself inhibited glucose-dependent insulin release while low concentrations did not. PQQ had no effect on the actions of IL-1 beta. Three isosteric and isomeric analogues of PQQ were also investigated. One of the PQQ isomers had an inhibitory effect on insulin secretion at low concentrations where PQQ had no effect. These results reflect the sensitivity of islets to oxidative stress.  相似文献   

19.
Electrical field stimulation (EFS) produced relaxation of contracted arteries in the presence of tetrodotoxin. In the present study the contributions of vascular smooth muscle repolarization and endothelial release of nitric oxide to the relaxation response were investigated using isolated rat tail arteries and bovine aortic endothelial cells (BAEC). Intact and endothelium-denuded rings or intact, pressurized artery segments were contracted with either phenylephrine or KCl prior to EFS. Electrical field stimulation induced a small relaxation in denuded, phenylephrine contracted rings that was inhibited by the K+ channel blockers glibenclamide and BaCl2. In intact, phenylephrine-contracted rings, EFS induced significantly larger relaxations that were inhibited by BaCl2 as well as by L-NAME, an inhibitor of nitric oxide (NO) synthase, and methylene blue. EFS-induced relaxations were completely inhibited when BaCl2 and L-NAME or methylene blue were combined. Exposure to Ca(2+)-free buffer or diltiazem also inhibited the relaxation while ascorbic acid had no effect. Effluent from electrically stimulated BAEC caused denuded, phenylephrine contracted rings to relax. The ability of the effluent to cause relaxation was almost completely blocked by exposure of the BAEC to L-NAME or exposure of the recipient vascular smooth muscle to methylene blue; glibenclamide caused partial blockade. Simultaneous measurements of membrane potential and intraluminal pressure showed that EFS-induced membrane repolarization preceded changes in steady-state pressure. It is concluded that (1) the smooth muscle cells possess an endothelium-independent repolarization mechanism, (2) EFS causes endothelial cells of intact arteries to release NO and possibly a hyperpolarizing factor, (3) EFS of BAEC causes release of NO, and (4) EFS-induced relaxation depends on vascular smooth muscle cell membrane repolarization and endothelial cell release of vasoactive substances.  相似文献   

20.
In the vascular system, distinct isoforms of nitric oxide synthase (NOS) generate nitric oxide (NO), which acts as a biological messenger. Its role in the development of transplant arteriosclerosis (TA) is still unclear. To investigate whether NO is involved in TA, we studied the expression of NOS isoforms, inducible NOS (iNOS) and endothelial NOS (eNOS), by immunohistochemistry and in situ hybridization during the first two post-transplantation months and their relation with cold ischemia (1 to 24 hours) and reperfusion injury using an aortic transplantation model in the rat. We found an increased iNOS expression in the intima and adventitia and a decreased expression in the media, whereas eNOS expression was not significantly altered during the development of TA. Co-localization studies suggested that iNOS-positive cells were vascular smooth muscle cells, monocyte-derived macrophages, and endothelial cells. Prolonged ischemic storage time resulted in an increase in eNOS expression in the neointima. In situ hybridization showed iNOS mRNA expression by vascular cells in the neointima and media. NO produced by iNOS and eNOS may be involved, at least in part, in the pathogenesis of TA in aortic grafts. Additional studies are needed to confirm the modulatory mechanism of NO during the development of TA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号