首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Ci L  Suhr J  Pushparaj V  Zhang X  Ajayan PM 《Nano letters》2008,8(9):2762-2766
Carbon nanotubes are considered short fibers, and polymer composites with nanotube fillers are always analogues of random, short fiber composites. The real structural carbon fiber composites, on the other hand, always contain carbon fiber reinforcements where fibers run continuously through the composite matrix. With the recent optimization in aligned nanotube growth, samples of nanotubes in macroscopic lengths have become available, and this allows the creation of composites that are similar to the continuous fiber composites with individual nanotubes running continuously through the composite body. This allows the proper utilization of the extreme high modulus and strength predicted for nanotubes in structural composites. Here, we fabricate such continuous nanotube polymer composites with continuous nanotube reinforcements and report that under compressive loadings, the nanotube composites can generate more than an order of magnitude improvement in the longitudinal modulus (up to 3,300%) as well as damping capability (up to 2,100%). It is also observed that composites with a random distribution of nanotubes of same length and similar filler fraction provide three times less effective reinforcement in composites.  相似文献   

2.
Composites were synthesized by “in-situ” polymerization of polyazomethine, a liquid crystal polymer (LCP), in presence of multi-walled carbon nanotubes (MWNTs) previously dispersed in one of the employed monomers. Fiber processing was carried out by extrusion from the composites containing 1 and 10 wt.% of MWNTs at the mesophase temperature. We have observed that the typical highly oriented internal fibrillar structure can be significantly disrupted by increasing the nanotube content in the composite fibers. Evidences of MWNT alignment were found in the studied LCP/MWNT composites.  相似文献   

3.
Viscoelasticity in carbon nanotube composites   总被引:1,自引:0,他引:1  
Polymer composites reinforced by carbon nanotubes have been extensively researched for their strength and stiffness properties. Unless the interface is carefully engineered, poor load transfer between nanotubes (in bundles) and between nanotubes and surrounding polymer chains may result in interfacial slippage and reduced performance. Interfacial shear, although detrimental to high stiffness and strength, could result in very high mechanical damping, which is an important attribute in many commercial applications. We previously reported evidence of damping in nanocomposites by measuring the modal response (at resonance) of cantilevered beams with embedded nanocomposite films. Here we carry out direct shear testing of epoxy thin films containing dense packing of multiwalled carbon nanotube fillers and report strong viscoelastic behaviour with up to 1,400% increase in loss factor (damping ratio) of the baseline epoxy. The great improvement in damping was achieved without sacrificing the mechanical strength and stiffness of the polymer, and with minimal weight penalty. Based on the interfacial shear stress (approximately 0.5 MPa) at which the loss modulus increases sharply for our system, we conclude that the damping is related to frictional energy dissipation during interfacial sliding at the large, spatially distributed, nanotube-nanotube interfaces.  相似文献   

4.
Due to their high stiffness and strength, as well as their electrical conductivity, carbon nanotubes are under intense investigation as fillers in polymer matrix composites. The nature of the carbon nanotube/polymer bonding and the curvature of the carbon nanotubes within the polymer have arisen as particular factors in the efficacy of the carbon nanotubes to actually provide any enhanced stiffness or strength to the composite. Here the effects of carbon nanotube curvature and interface interaction with the matrix on the composite stiffness are investigated using micromechanical analysis. In particular, the effects of poor bonding and thus poor shear lag load transfer to the carbon nanotubes are studied. In the case of poor bonding, carbon nanotubes waviness is shown to enhance the composite stiffness.  相似文献   

5.
Room temperature electron spin resonance spectra of epoxy resins loaded with various concentrations of multiwalled carbon nanotubes of various lengths are analyzed. The resonance spectrum near the free electron line position is dominated by a single almost symmetric line assigned to delocalized electrons residing on multiwalled carbon nanotubes. The experimental research shown that: (1) The dependence of the g-factor on nanotubes length is controlled by the distortions of multiwalled carbon nanotubes. (2) The dependence of the g-factor on the concentration of multi-walled nanotubes reflects the interactions between electrons localized on different nanotubes. In insulating composites, the resonance line width broadens as the length and the concentration of multiwalled carbon nanotubes is increased. (3) For conducting composites, the dependence of the electron spin resonance line width on the length and concentration of multiwalled carbon nanotubes is controlled by Elliott contribution and exchange interactions, respectively. (4) The concentration of conduction electrons increases as the length and the concentration of multiwalled carbon nanotubes are increased.  相似文献   

6.
A novel glucose biosensor based on a rigid and renewable carbon nanotube (CNT) based biocomposite is reported. The biosensor was based on the immobilization of glucose oxidase (GOx) within the CNT epoxy-composite matrix prepared by dispersion of multi-wall CNT inside the epoxy resin. The use of CNT, as the conductive part of the composite, ensures better incorporation of enzyme into the epoxy matrix and faster electron transfer rates between the enzyme and the transducer. Experimental results show that the CNT epoxy composite biosensor (GOx-CNTEC) offers an excellent sensitivity, reliable calibration profile, and stable electrochemical properties together with significantly lower detection potential (+0.55 V) than GOx-graphite epoxy composites (+0.90 V; difference deltaE = 0.35 V). The results obtained favorably compare to those of a glucose biosensor based on a graphite epoxy composite (GOx-GEC).  相似文献   

7.
8.
张勇  刘畅  李峰  成会明 《新型炭材料》2006,21(4):307-314
采用聚乙烯醇(PVA)树脂炭化的方法,制备了PVA树脂炭包覆硅/不同纳米碳管复合材料,通过X-射线、高分辩电镜观察和电化学性能测试等手段比较研究了单壁、双壁和多壁纳米碳管作为弹性导电网络缓解硅在充放电过程中体积变化方面的效果。结果表明,单壁纳米碳管和双壁纳米碳管比多壁纳米碳管能够更好地缓解硅在循环过程中产生的结构和体积变化,这主要是因为其长径比大,缠裹效果更好。单壁纳米碳管和双壁纳米碳管具有相近的直径、长径比及宏观分布形式,但在循环过程中,双壁纳米碳管的结构稳定性好于单壁纳米碳管,进而其缓解硅结构变化的效果更好。  相似文献   

9.
Composites have set the standard for high strength materials for several decades. With the discovery of nanotubes, new possibilities for reinforced composites have arisen, with potential mechanical properties superior to those of currently available materials. This paper reports the properties of epoxy matrix reinforced with fibres of carbon nanotubes (CNTs) which, in many ways, are similar to standard composites reinforced with commercial fibres. The composites were formed by the back diffusion of the uncured epoxy into an array of aligned fibres of CNTs. The fibre density and volume fraction were measured from thermogravimetric analysis (TGA). Properties in tension and compression were measured, and the level of fibre–matrix interaction analysed fractographically. The results show the significant potential for this route to CNT reinforcement.  相似文献   

10.
The formation of silica- and titania-coated single-wall carbon nanotubes (SWNTs) using a mutlifunctional peptide to both suspend SWNTs and direct the precipitation of silica and titania at room temperature is demonstrated.  相似文献   

11.
孙晓刚 《新型炭材料》2007,22(4):375-378
将不同质量分数的碳纳米管和环氧树脂充分混合,制成复合吸波涂料并涂覆在铝板上制成吸波涂层。采用TEM对碳纳米管的形貌进行观察。使用反射率扫频测量系统HP8757E标量网络分析仪检测复合材料的吸波性能。结果表明,复合材料在2GHz~18GHz均有良好的吸波性能。碳纳米管加载质量分数为8%和10%时,复合材料吸波性能最佳。8%碳纳米管加载量,峰值最大,达到~22.55dB,波峰出现在12.32GHz,带宽分别为2.56GHz(R〈-8dB)和4.00GHz(R〈-5dB)。10%碳纳米管添加量,带宽最大,分别达到2.80GHz(R〈-8dB)和7.00GHz(R〈-5dB),波峰出现在13.67GHz,峰值为-14.59dB。  相似文献   

12.
Carbon nanotube (CNT) reinforced polymeric composites provide a promising future in structural engineering. To understand the bridging effect of CNT in the events of the fracture of CNT reinforced composites, the finite element method was applied to simulate a single CNT pullout from a polymeric matrix using cohesive zone modelling. The numerical results indicate that the debonding force during the CNT pullout increases almost linearly with the interfacial crack initiation shear stress. Specific pullout energy increases with the CNT embedded length, while it is independent of the CNT radius. In addition, a saturated debonding force exists corresponding to a critical CNT embedded length. A parametric study shows that a higher saturated debonding force can be achieved if the CNT has a larger radius or if the CNT/matrix has a stronger interfacial bonding. The critical CNT embedded length decreases with the increase of the interfacial crack initiation shear stress.  相似文献   

13.
Carbon nanotubes (CNTs) possess exceptional mechanical properties and are therefore suitable candidates for use as reinforcements in composite materials. The CNTs, however, form complicated shapes and do not usually appear as straight reinforcements when introduced in polymer matrices. This results in a decrease in nanotube effectiveness in enhancing the matrix mechanical properties. In this paper, theory of elasticity of anisotropic materials and finite element method (FEM) are used to investigate the effects of CNT helical angle on effective mechanical properties of nanocomposites. Helical nanotubes with different helical angles are modeled to investigate the effects of nanotube helical angle on nanocomposite effective mechanical properties. In addition, the results of models consisting of helical nanotubes are compared with the effective mechanical properties of nanocomposites reinforced with straight nanotubes. Ultimately, the effects of helical CNT volume fraction on nanocomposite longitudinal modulus are investigated.  相似文献   

14.
The main goal of this research is to study the tensile behavior of embedded short carbon nanotubes (CNTs) in a polymer matrix in presence of van der Waals (vdW) interaction as inter-phase region. A 3D finite element model of a unit cell consisting of capped carbon nanotubes, inter-phase and surrounding polymer is built. The unit cell is subjected to tensile load case to obtain longitudinal Young’s modulus of the investigated cell. A parametric study is carried out to investigate the effect of CNT’s length on reinforcement. It is observed that improvement in the Young’s modulus of CNT-composite is negligible for lengths smaller than 100 nm and saturation takes place in larger lengths on the order of 10 μm. Furthermore, a comparison between results obtained for short carbon nanotubes and long carbon nanotube is presented. The efficient length of CNT in form of (10, 10) is obtained at the order of 10 μm. Finally, it was shown that direct use of micromechanics equations for short fibers will overestimate the stiffness. However, employing effective stiffness of equivalent fiber comprising of CNT and its inter-phase instead of high modulus of CNT will lead us to more appropriate results, which are in an acceptable agreement with conventional semi-empirical micromechanics equations.  相似文献   

15.
碳纳米管水泥基复合材料电学性能数值模拟   总被引:1,自引:0,他引:1  
采用ANSYS12.0和蒙特卡洛随机方法构建了碳纳米管水泥基复合材料的有限元模型,并基于有限元法分析了碳纳米管长径比、直径和掺量对复合材料有效电阻率的影响,并在此基础上通过有效介质方程对有效电阻率数值解和电阻率实验值进行了拟合。数值计算结果表明,碳纳米管水泥基复合材料有效电阻率的有限元解与解析解较为一致,证明采用有限元法进行电学分析具有可行性;碳纳米管水泥基复合材料有效电阻率随碳纳米管掺量和碳纳米管长径比增加而减小,随着碳纳米管直径的减小而减小;有效介质方程对碳纳米管水泥基复合材料有效电阻率实验值和有限元数值解拟合曲线变化趋势是一致的。  相似文献   

16.
Traditional single-fiber pull-out type experiments were conducted on individual multiwalled carbon nanotubes (MWNT) embedded in an epoxy matrix using a novel technique. Remarkably, the results are qualitatively consistent with the predictions of continuum fracture mechanics models. Unstable interface crack propagation occurred at short MWNT embedments, which essentially exhibited a linear load-displacement response prior to peak load. Deep embedments, however, enabled stable crack extension and produced a nonlinear load-displacement response prior to peak load. The maximum pull-out forces corresponding to a wide range of embedments were used to compute the nominal interfacial shear strength and the interfacial fracture energy of the pristine MWNT-epoxy interface.  相似文献   

17.
多壁碳纳米管填充丁苯橡胶复合材料的研究   总被引:12,自引:6,他引:12  
采用浓硝酸(HNO3)氧化处理后的多壁碳纳米管(MWNTs)与丁苯橡胶(SBR)及其他配合剂在开炼机上进行混炼加工制备MWNTs/橡胶复合材料,并与炭黑补强橡胶体系进行对比,进而研究了MWNTs/橡胶复合材料的物理性能,并初步探讨了该材料微观结构与性能之间的关系。结果表明:随着MWNTs质量百分含量的增加,橡胶复合材料的力学性能也随之增高;MWNTs/橡胶复合材料的抗撕裂强度(25.9kN/m)、硬度(58)、磨耗(0.22mL/1.61km)性能较炭黑/橡胶体系要好。由MWNTs补强的橡胶对开发具有低滚动滞后性和抗疲劳损失的轮胎胎面胶将有很大的实用潜力。  相似文献   

18.
The change in electrical resistance due to mechanical deformation of carbon nanotube (CNT)/polymer composites can be rationalized in terms of two effects: (i) changes in the composite electrical resistivity due to changes in the CNT network configuration and (ii) deformation of the CNTs themselves. The contribution of CNT dimensional changes (ii) to the piezoresistivity of CNT/polymer composites is investigated here. An analytical model based exclusively on dimensional changes which describes the CNT change of electrical resistance in terms of its mechanical deformation is proposed. A micromechanics approach and finite element analysis are performed to correlate the macroscale composite strain to the individual CNT strain. The CNT change of electrical resistance is quantified for different matrix elastic moduli and CNT weight fractions. The CNT/polymer composite is also modeled as an effective continuum material in terms of both its electrical and mechanical responses so that the effect of dimensional changes on the global piezoresistivity can be investigated. Based on the modeling predictions and previous experimental results, it is estimated that the CNT change of resistance due to the macroscale composite strain is marginal (∼5%) compared to the total composite change of resistance commonly measured in the laboratory, suggesting that the dominant effect in the piezoresistivity of CNT/polymer composites is the change in the CNT network configuration.  相似文献   

19.
Multiscale modeling of carbon nanotube reinforced polymer composites   总被引:1,自引:0,他引:1  
This article examines the effect of interfacial load transfer on the stress distribution in carbon nanotube/polymer composites through a stress analysis of the nanotube/matrix system. Both isostrain and isostress loading conditions are investigated. The nanotube is modeled by the molecular structural mechanics method at the atomistic level. The matrix is modeled by the finite element method, and the nanotube/matrix interface is assumed to be bonded either perfectly or by van der Waals interactions. The fundamental issues examined include the interfacial shear stress distribution, stress concentration in the matrix in the vicinity of nanotube ends, axial stress profile in the nanotube, and the effect of nanotube aspect ratio on load transfer.  相似文献   

20.
In this work, films of horizontally aligned single-walled carbon nanotubes were thermally and electrically characterized in order to determine the bolometric performance. An average thermal time constant of τ = 420 μs along with a temperature coefficient of resistance of TCR = -2.94% K(-1) were obtained. The maximum voltage responsivity and detectivity obtained were R(V) =230 V/W and D* = 1.22 × 10(8) cm Hz(1/2)/W, respectively. These values are higher than the maximum voltage responsivity (150 V/W) and maximum temperature coefficient of resistance (1.0% K(-1)) previously reported for carbon nanotube films at room temperature. The maximum detectivity was obtained at a frequency of operation of 1.25 kHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号