首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The addition of fillers in preceramic precursor plays an important role in maintaining the shape and diminishing defects in polymer-derived-ceramics. SiCw/SiCp reinforced 3D-SiC was prepared via direct ink writing of polycarbosilane-based slurries. Effects of SiCp content and the sintering temperature on the microstructure, pyrolysis process, composition and mechanical properties were studied. Complex structures of SiC ceramics with good retention were obtained using PCS/n-hexane/SiCw-SiCp solutions. Printed lines showed a feature of core-shell structure, owing to the decreased shear stress along the radial direction of the nozzle. Increased SiCp/PCS ratios greatly decreased the linear shrinkage and weight loss from 18.2% to 8.3% and 17.5% to 10.6%, respectively. Satisfactory tensile strength of 21.3 MPa was achieved for 3D-SiC lattices with a SiCp/PCS ratio of 0.7, owing to the low porosity and particle reinforcement. This study provides a way to prepare strengthened 3D ceramics using direct ink writing via the polymer precursor routes.  相似文献   

2.
Spray drying, binder jetting and chemical vapor infiltration (CVI) were used in combination for the first time to fabricate SiC whisker-reinforced SiC ceramic matrix composites (SiCW/SiC). Granulated needle-shaped SiCW was spray dried into SiCW spherical particles to increase flowability and thereby increase printability. Then, binder jetting was employed to print a novel SiCW preform with two-stage pores using the SiCW spherical particles. The subsequent CVI technology produced pure, dense, and continuous SiC matrix with high modulus and strength. Consequently, SiCW/SiC with appropriate mechanical properties was obtained. Finally, the challenges of the novel method and the ways to improve the mechanical properties of SiCW/SiC are discussed.  相似文献   

3.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

4.
In this study, SiC nanowires (SiCNWS) were grown in situ on the surface of PyC interface through chemical vapor infiltration (CVI) to improve the mechanical characteristics and thermal conductivity of three-dimensional SiCf/SiC composites fabricated via precursor infiltration pyrolysis (PIP). The effect of SiCNWS on the properties of the obtained composites was investigated by comparing them with conventional SiCf/PyC/SiC composites. After the deposition of SiCNWS, the flexural strength of the SiCf/SiC composites was found to increase by 46 %, and the thermal conductivity showed an obvious increase at 25?1000 °C. The energy release of the composites in the damage evolution process was analysed by acoustic emission. The results indicated that the damage evolution process was delayed owing to the decrease in porosity, the crack deflection and bridging of the SiCNWS. Furthermore, the excellent thermal conductivity was attributed to the thermally conductive pathways formed by the SiCNWS in the dense structure.  相似文献   

5.
2D-SiC/SiC陶瓷基复合材料的拉伸本构模型研究   总被引:2,自引:0,他引:2  
通过单向拉伸试验,研究了2D-SiC/SiC复合材料的应力-应变行为.结果表明,材料单向拉伸应力-应变曲线表现出明显的双线性特征,且线弹性段较长.通过试件断口照片,分析了2D-SiC/SiC复合材料单向拉伸破坏机理和损伤模式.基于对损伤过程的假设,建立了二维连续纤维增强陶瓷基复合材料的双线性本构模型,并将其应用于2D-SiC/SiC复合材料的应力-应变曲线模拟,模拟结果与试验值吻合很好.同时,分析计算表明,2D-SiC/SiC复合材料的单轴拉伸行为主要由纵向纤维柬决定,横向纤维对材料的整体模量和强度贡献很小.  相似文献   

6.
《Ceramics International》2021,47(19):26971-26977
The SiCf/SiC composites have been manufactured by a hybrid route combining chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) techniques. A relatively low deposition rate of CVI SiC matrix is favored ascribing to that its rapid deposition tends to cause a ‘surface sealing’ effect, which generates plenty of closed pores and severely damages the microstructural homogeneity of final composites. For a given fiber preform, there exists an optimized value of CVI SiC matrix to be introduced, at which the flexural strength of resultant composites reaches a peak value, which is almost twice of that for composites manufactured from the single PIP or CVI route. Further, this optimized CVI SiC amount is unveiled to be determined by a critical thickness t0, which relates to the average fiber distance in fiber preforms. While the deposited SiC thickness on fibers exceeds t0, closed pores will be generated, hence damaging the microstructural homogeneity of final composites. By applying an optimized CVI SiC deposition rate and amount, the prepared SiCf/SiC composites exhibit increased densities, reduced porosity, superior mechanical properties, increased microstructural homogeneity and thus reduced mechanical property deviations, suggesting a hybrid CVI and PIP route is a promising technique to manufacture SiCf/SiC composites for industrial applications.  相似文献   

7.
《Ceramics International》2020,46(11):18813-18825
This investigation intended to assess the influence of SiC morphology on the sinterability and physical-mechanical features of TiB2-SiC composites. For this aim, different volume percentages of SiC particles and SiC whiskers were introduced to TiB2 samples hot-pressed at 1950 °C for 2 h under an external pressure of 25 MPa. The characterization of as-sintered specimens was carried out using X-ray diffraction, optical microscopy, and scanning electron microscopy. The relative density studies revealed that SiCw had a more significant impact on the sinterability of TiB2-based composites. The XRD investigation confirmed the production of an in-situ TiC phase during the hot-pressing; however, some peaks related to the graphitized carbon also appeared in the patterns of SiCw-doped ceramics. The addition of 25 vol% SiCp halved the average grain size of TiB2 while introducing the same content of SiCw decreased this value by just around 20%. Finally, the highest Vickers hardness and fracture toughness were obtained for the sample reinforced with 25 vol% SiCw, standing at 29.3 GPa and 6.1 MPa m1/2, respectively.  相似文献   

8.
《Ceramics International》2016,42(7):8376-8384
TiB2–TiC–Ti3SiC2 porous composites were prepared through a plasma heating reaction using powder mixtures of Ti, B4C SiC whiskers (SiCw) and SiC particles (SiCp). The effects of the SiCw and SiCp content on pore structures, phase constituents, microstructure, and crystal morphology of TiC were studied. The results show that TiC, TiB, Ti3B4 phases are formed within the 5Ti+B4C system. With the addition of SiCw and SiCp, the TiB and Ti3B4 phases are reduced, sometimes even disappeared. Interestingly, the content of TiB2 and TiC increased, resulting in Ti3SiC2 and TiSi2 being formed. The porosity of composites increases notably with the addition of SiCw. However, with the increase of SiCp, the porosity of the composites first decreases, followed by an increase. After adding the specified amount of SiCw/SiCp, the compressive strength of composites are improved significantly. Additionally, the pore size of the composites are decreased significantly with the addition of SiCw/SiCp. During the plasma heating process, some Si atoms will diffuse into the TiC lattice, which in turn made the cubic TiC grains into hexagonal lamellar TiC or Ti3SiC2 grains.  相似文献   

9.
Effects of SiC whiskers (SiCw) on the mechanical properties of composites largely depend on their thermal stability at high temperature. In this study, pure SiCw and Ti3SiC2 coated SiCw were thermal treated at 1600–1800°C for 1 h. Their phase assemblage, morphology, and structural evolution were investigated. Oxygen partial pressures in the graphite furnace resulted in the breakdown of SiCw into particles at 1600°C, and the degradation became more pronounced with temperature increasing. The thermal stability of SiC whiskers at 1600–1700°C was significantly improved by a thin Ti3SiC2 coating on them, as both thermodynamic calculations and experimental observations suggest Ti3SiC2 coating could be preferentially oxidized/decomposed, prior to the active oxidation of SiC. At 1800°C, the protective role of the coating on the whiskers became weakened. SiC was converted into gaseous SiO and CO, with the remaining of interconnected TiC micro-rods and amorphous carbon.  相似文献   

10.
Laminated SiCw/SiC ceramic composites were prepared by chemical vapor infiltration (CVI) and tape casting, and the advantages of this method were investigated. The results showed that this method can increase strength of the composites by reducing the damage of SiC whiskers and increasing their volume fraction, and increase toughness of the composites by controlling the interfacial bonding between whiskers and matrix and inter-laminar bonding between layers. The volume fraction of whiskers reached 40 vol.%, and the flexural strength, tensile strength and fracture toughness were 315 MPa, 158 MPa and 8.02 MPa m1/2, respectively. Interfacial and interlaminar crack deflection and bridging were observed.  相似文献   

11.
SiC/SiC composites prepared by liquid silicon infiltration (LSI) have the advantages of high densification, matrix cracking stress and ultimate tensile strength, but the toughness is usually insufficient. Relieving the residual microstress in fiber and interphase, dissipating crack propagation energy, and improving the crystallization degree of interphase can effectively increase the toughness of the composites. In this work, a special SiC particles and C (SiCP +C) double-cladding layer is designed and prepared via the infiltration of SiCP slurry and chemical vapor infiltration (CVI) of C in the porous SiC/SiC composites prepared by CVI. After LSI, the SiC generated by the reaction of C with molten Si combines with the SiCP to form a layered structure matrix, which can effectually relieve residual microstress in fiber and interphase and dissipate crack propagation energy. The crystallization degree of BN interphase is increased under the effects of C-Si reaction exotherm. The as-received SiC/SiC composites possess a density of 2.64 g/cm3 and a porosity of 6.1%. The flexural strength of the SiC/SiC composites with layered structure matrix and highly crystalline BN interphase is 577 MPa, and the fracture toughness reaches up to 37 MPa·m1/2. The microstructure and properties of four groups of SiC/SiC composites prepared by different processes are also investigated and compared to demonstrate the effectiveness of the SiCP +C double-cladding layer design, which offers a strategy for developing the SiC/SiC composites with high performance.  相似文献   

12.
To improve the oxidation resistance and alleviate the thermal stress of the HfB2-SiC-Si/SiC coatings for C/C composites, in-situ formed SiC whiskers (SiCw) were introduced into the HfB2-SiC-Si/SiC coatings via chemical vapor deposition (CVD). Effects of SiCw on isothermal oxidation and thermal shock resistance for the HfB2-SiC-Si/SiC coatings were investigated. Results showed that the SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent oxidation resistance for C/C composites with only 0.88% weight loss after oxidation for 468?h at 1500?°C, which was markedly superior to 4.86% weight loss for coatings without SiCw. Meanwhile, after 50 times thermal cycling, the weight loss of the SiCw-HfB2-SiC-Si/SiC coated samples was 4.48%, which showed an obvious decrease compared with that of the HfB2-SiC-Si/SiC coated samples. The SiCw-HfB2-SiC-Si/SiC coatings exhibited excellent adhesion to the C/C substrate and had no penetrating cracks after oxidation. The improved performance of the SiCw-HfB2-SiC-Si/SiC coatings could be ascribed to the SiCw, which effectively relieved CTE mismatch and remarkably suppressed the cracks through toughening mechanisms including whiskers pull-out and bridging strengthening. The above results were confirmed by thermal analysis based on the finite element method, which demonstrated that SiCw could effectively alleviate thermal stress generated by temperature variation. Furthermore, the SiCw-HfB2-SiC-Si/SiC coating can provide a promising fail-safe mechanism during the high temperature oxidation by the formation of HfSiO4 and SiO2, which can deflect cracks and heal imperfections.  相似文献   

13.
The in-situ formed SiC/Al4SiC4 joining layer was used to join monolithic SiC using an electric field-assisted sintering technique. A multiphase powder of Al4C3/SiC/Al4SiC4 was used as the initial joining material to obtain the in-situ reaction layer of SiC/Al4SiC4 via the appropriate interface reactions. The bending strength as high as 240.5 ± 6.6 MPa was obtained for the sample joined at 1800 °C, which was higher than the strength of the un-joined SiC matrix. Sound joints were obtained when Al4C3 was completely transformed to Al4SiC4, and a fully dense SiC/Al4SiC4 joining layer was consolidated. The integration of the joining layer with the SiC matrix was improved by a high amount of liquid phase formed at the interface. The proposed SiC/Al4SiC4 joining layer, with good thermal matching with SiC matrix, shows a great potential to be applied as a joining material for SiC-based ceramic matrix composites.  相似文献   

14.
Three-layer silicon carbide (SiC) cladding architectures are considered to be promising materials for current light-water nuclear reactors. Herein, a novel processing approach was proposed to fabricate dense three-layer SiC tubes by introducing SiC nanowires (NWs) on the graphite rod, which resulted in change in the valley-peak structure of SiCf tubular preform. A dense three-layer-NWs SiC cladding tube, consisting of a chemical vapor infiltration (CVI)-SiC inner layer, a CVI-SiCf/SiC composite layer, and a CVI-SiC outer layer, was obtained through CVI process. Microstructure and hoop strength of the as-obtained three-layer-NWs SiC cladding tube were systematically investigated. By avoiding delamination of the layers and reducing the pores, the three-layer-NWs SiC cladding tube exhibited an average hoop strength of 316.6 MPa with a Weibull modulus of 11.55.  相似文献   

15.
Al2O3–SiC–C composites were prepared using tabular corundum, ball pitch and silicon carbide as the main raw materials. The carbon nanotubes (CNTs) and SiC whiskers (SiCw) were in situ synthesized and their effects on the thermo–mechanical properties of Al2O3–SiC–C composites have been studied. The experimental results indicated that the high yield of SiCw and CNTs with large aspect ratio could be obtained due to addition of Ni(NO3)2·6H2O as catalyst in the composites. The cold modulus of rupture values were increased by 24% to 7.2 MPa, and the flexural modulus was increased from 19 GPa to 24 GPa. Additionally, the hot modulus of rupture reached a maximum value of 3.6 MPa, which presented a 71% increase over that of composites without catalyst. After three thermal shock cycles, the residual cold crush strength was improved from 57.1% to 76.9%. It is believed that the enhancement in the thermo-mechanical properties of Al2O3–SiC–C composites could be attributed to the reinforcement effect of SiCw and CNTs.  相似文献   

16.
Monolithic SiC, for the first time, was successfully joined using a SiC whisker-reinforced Ti3SiC2 composite (SiCw/Ti3SiC2) filler via electric field-assisted sintering technique. A thin Ti coating layer was formed on the SiC surface to minimize the residual stress at the joint interface by transforming it into a TiC gradient layer. After optimizing process parameters, a joint strength higher than 250 MPa was obtained, which is higher than the other values reported in the literature. Failure occurred at the SiC base rather than the joining interface because of the improved joint strength by the incorporation of SiCw. The addition up to 15 wt. % SiCw in the filler layer improved the joint strength by various strengthening mechanisms. On the other hand, the joint strength was lower with 20 wt. % SiCw addition, indicating the importance of thermal expansion mismatch between SiCw and Ti3SiC2 to obtain a sound SiC joint.  相似文献   

17.
A pair of Ti3SiC2 reinforced with SiC whiskers (SiCw/Ti3SiC2) composites was successfully joined without any joining materials using electric field-assisted sintering technology at a temperature as low as 1090°C (Ti) and a short time of 30 s. The microstructure and mechanical properties of the obtained SiCw/Ti3SiC2 joints were investigated. The solid-state diffusion was the main joining mechanism, which was facilitated by a relatively high current density (~586 A/cm2) at the joining interface. The shear strength of the sample joined at 1090°C was 51.8 ± 2.9 MPa. The sample joined at 1090°C failed in the matrix rather than at the interface, which confirmed that a sound inter-diffusion bonding was obtained. A rapid and high efficient self-joining process may find application in the case of SiCw/Ti3SiC2 sealing cladding tube and end cap.  相似文献   

18.
SiC fibers reinforced SiBCN ceramic matrix composites (SiCf/BN/SiBCN composites) were synthesized by direct chemical vapor infiltration (CVI), polymer infiltration pyrolysis (PIP) or chemical vapor infiltration combined with polymer infiltration pyrolysis (CVI + PIP). It is shown that the insertion of a continuous and dense SiBCN matrix via the CVI process improves the flexural strength and modulus. Interface debonding and fiber pullout happened with 50–100 nm BN interface in CVI and CVI + PIP SiCf/BN/SiBCN composites. The relative complex permittivity was measured in X-band. Higher ε′′ values in CVI-containing composites can be observed, which can be attributed to the accumulation of C and SiC phases and a multilayer matrix. Strong electromagnetic wave attenuation ability was obtained with high dielectric loss.  相似文献   

19.
Mullite coating, SiC whiskers toughened mullite coating (SiCw-mullite), and cristobalite aluminum phosphate (c-AlPO4) particle modified SiCw-mullite coating (c-AlPO4-SiCw-mullite) were prepared on SiC coated C/SiC composites using a novel sol-gel method combined with air spraying. Results show that molten SiO2 formed by the oxidation of SiC whiskers and molten c-AlPO4 improved the bonding strength between mullite outer coating and SiC–C/SiC composites due to their high-temperature bonding properties. The bonding strength between mullite, SiCw-mullite, c-AlPO4-SiCw-mullite outer coatings and SiC–C/SiC composites were 2.41, 4.31, and 7.38 MPa, respectively. After 48 thermal cycles between 1773 K and room temperature, the weight loss of mullite/SiC coating coated C/SiC composites was up to 11.61%, while the weight losses of SiCw-mullite/SiC and c-AlPO4-SiCw-mullite/SiC coatings coated C/SiC composites were reduced to 7.40% and 5.12%, respectively. The addition of appropriate SiC whiskers can considerably improve the thermal shock resistance of mullite coating owing to their excellent mechanical properties at high temperature. In addition, c-AlPO4 particles can further improve the thermal shock resistance of SiCw-mullite coating due to their high-temperature bonding and sealing properties. No obvious micro-pores and cracks were observed on the surface of c-AlPO4-SiCw-mullite coating after 48 thermal cycles due to timely healing effect by formation of secondary mullite.  相似文献   

20.
A fine study of the interfacial part in the silicon carbide fiber (SiCf) reinforced silicon carbide (SiC) composites was conducted by transmission electron microscopy. The boron nitride (BN) and carbon nanotubes (CNTs) were progressively coated on the SiCf by chemical vapor deposition method to form a hierarchical structure. Three composites with different interfaces, SiCf–CNTs/SiC, SiCf@BN/SiC, and SiCf@BN–CNTs/SiC, were fabricated by polymer infiltration and pyrolysis method. The interfaces and microstructures of the three composites were carefully characterized to investigate the improvement mechanism of strength and toughness. The results showed that BN could protect the surface of SiCf from corrosion and oxidation so that improved the possibility of debonding and pullout. CNTs could avoid the propagation of cracks in the composites so that improved the damage resistance of the matrix. The synergistic reinforcement brought by BN and CNTs interfaces made the SiCf@BN–CNTs/SiC composites with a tensile fracture strength as high as 359 MPa, with an improvement of 23% compared to that of SiCf@BN/SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号