首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2017,43(7):5680-5686
Nanostructured Li2TiO3 ceramics which may have effective thermal conductivity, excellent tritium release behaviour and good irradiation resistance are regarded as a promising solid tritium breeding material for the fusion reactor blanket of the International Thermonuclear Experimental Reactor (ITER). However, due to the limitations of the preparation technology, reports concerning Li2TiO3 nanoceramics have been rare. In this paper, uniform nano-Li2TiO3 powder particles which were essential to obtain nanostructured Li2TiO3 ceramics pebbles were synthesised via a cetyltrimethylammonium bromide (CTAB)-assisted hydrothermal method, and then rare, homogeneous nanostructured Li2TiO3 ceramic pebbles were fabricated with the as-prepared powder particles. The mechanisms by which CTAB can reduce particle agglomeration and be of assistance in achieving a nanostructured Li2TiO3 ceramic were also investigated. In addition, systematic experiments on the relationship between the added amount of CTAB and the mechanical properties of the Li2TiO3 ceramic structure were also carried out. The results revealed that the desired Li2TiO3 nanoceramic could be fabricated when 3% CTAB was introduced, as the Li2TiO3 pebbles obtained had a small grain size (90 nm), high relative density (89.71%T.D.) and crush load (99.93 N), which were expected to show favourable potential as a promising tritium breeder material in the fusion reactor blanket.  相似文献   

2.
The effect of different amount of Li2TiO3(LT) (0–15?wt%) addition on the properties of composite Li4SiO4 (LS) ceramic pebbles were studied. The Li4SiO4-Li2TiO3 composite powder was prepared in-situ using solid state method at a calcination temperature as low as 800?°C. The composite pebbles were fabricated using a cost-effective and simple technique called extrusion-spherodization. The sintered pebbles were characterized for density, grain size, pore size distribution, crush load and moisture stability. The density of Li4SiO4 composite pebbles was improved for LS-5?wt% LT in comparison to LS pebbles when fired at 1000?°C. Moreover, the LS grain size in the composite pebbles was reduced (5.8?μm) in comparison to LS pebbles. We also found that the average crush load value of the LS-5?wt%LT composite pebbles had been improved by nearly 100% (33?N) to that of the pure LS pebbles (17?N). The LS-5?wt% LT pebbles showed improvement in stability to moisture.  相似文献   

3.
Polyvinyl pyrrolidone/polyvinyl alcohol (PVP/PVA) and polyvinyl pyrrolidone/starch (PVP/St) blends were prepared with different compositions. The compatibility studies indicate that PVP/PVA is compatible while PVP/St is incompatible. The addition of glycerol and glutaraldehyde can improve to some extent the phase separation behavior between PVP and St. The permittivity ε′ and the dielectric loss ε″ were measured in the frequency range 0.01 Hz up to 10 MHz and temperatures from 30 up to 90°C. It is found that the blend ratio (50/50) of both investigated systems is preferable for insulation purposes in comparable with the other blends under investigation. The data of the loss electric modulus M″ was calculated from the dielectric parameters ε′ and ε″and analyzed into three relaxation mechanisms ascribing the cooperative motion of the main and side chains τ1 (αβ), the side chain motion τ2 (β) and the segmental motion of the groups attached to the side chains τ3 (βγ). The activation energy corresponds to the second relaxation process ΔH2 was calculated using Arrhenius equation and found to be in the range which justifies the presumption of β‐relaxation process. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

4.
Li4SiO4 and Li2TiO3 have long been recognized as two excellent promising tritium breeding materials. In this paper, two kinds of ceramic pebbles, Li4SiO4 pure phase ceramic pebbles and Li4SiO4-xLi2TiO3 multiphase ceramic pebbles were prepared by a melt spraying method at a superheating temperature of 100 ℃ and then tested for their performance. The proportion of pebbles with a particle diameter of 0.8∼1.2 mm reached the maximum of 24.02 % when the spraying pressure is 0.04 MPa. The surface of the pebbles prepared by the spraying method was smooth, and the surface roughness was reported for the first time to reach 2.039 μm. The sphericity reached 1.027. When the Ti/Si molar ratio was 0.5, the crush load of the pebbles after heat treatment reached 71.6 N and the thermal conductivity of the materials reached its maximum of 3.098 W/(m·K) at 700 ℃.  相似文献   

5.
The bi-phase Li2TiO3–Li4SiO4 ceramic pebbles have been considered a promising breeder to realize the tritium self-sustainment in the blanket. However, up to now, the reported ceramic pebbles have the disadvantages of low yield, poor crushing load, and loose internal structure, which cannot meet the practical application requirements. In this work, the Li2TiO3–Li4SiO4 ceramic pebbles with excellent mechanical properties were fabricated successfully via the centrifugal granulation method with the assistance of introducing a spray-drying process, simulating particle trajectory by discrete element software and improving bonding interface between core and shell with ethylene glycol. The composition, microstructure, and inner structure of the Li2TiO3–Li4SiO4 ceramic pebbles were investigated, respectively, through X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray computed tomography (CT). It can be found that the employment of the ethylene glycol solution on the surface of Li2TiO3 can make the core and the shell combine well. Moreover, the effect of the rolling speed of the Li2TiO3–Li4SiO4 ceramic pebbles was investigated via discrete element method (EDEM) simulation and experiments. The experimental results displayed that the Li2TiO3–Li4SiO4 ceramic pebbles sintered at 1100°C for 2 h have a uniform diameter of 1 mm, a good sphericity of 0.97, and an excellent crushing load of 82.4 N, which are superior to those pebbles that obtained by using the traditional wet methods. Moreover, the CT results showed that the appropriate porosity of the core was 3.21% and of the shell was 10.73%. Therefore, the simple centrifugal granulation method can be applied to prepare the Li2TiO3–Li4SiO4 ceramic pebbles in a large scale and shed a light to investigate the relevant advanced biphasic tritium breeder materials in the future.  相似文献   

6.
Iranian Polymer Journal - Hydrogels were produced from mixtures of polyvinyl alcohol (PVA), polyvinyl pyrrolidone (PVP), and acrylic acid (AAc) using γ-radiation at doses of 3, 7, and...  相似文献   

7.
Li2TiO3 is considered as one of the best candidates for breeding materials. This article adopted a modification water-based sol–gel method to synthesize nano-Li2TiO3 powders, which overcomes the poor phase purity, coarse grain, and inferior crushing strength described in the previous literature. In this paper, the thermal effect of the precursor, the crystal phase, and the morphology of the powders were characterized by thermogravimetric analysis/differential thermal analysis (TG/DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM) techniques. The nano-structured Li2TiO3 powders with good dispersion and an average particle size of 20–50 nm were successfully synthesized at 600°C by controlling PH and hydrolysis rate. Moreover, the phase transition temperature for the monoclinic phase β-Li2TiO3 was as low as 600°C, which is lower than 750°C using the traditional solid-state method. Meanwhile, the morphology, porosity, crushing load, and thermal conductivity of ceramic pebbles are characterized systematically by using scanning electron microscope (SEM), mercury injection meter, compression strength equipment, and laser scattering method, respectively. Experimental results showed that the Li2TiO3 ceramic pebbles with a sphericity of .98, crush load of 48.4 N, and relative density of 90.03 % were successfully prepared at 1050°C for 2 h. This method will provide new guidance for the preparation of tritium breeders.  相似文献   

8.
《Ceramics International》2019,45(14):17114-17119
Lithium metatitanate (Li2TiO3) ceramic pebbles were fabricated from the powder synthesised via low-temperature solid-state precursor method. Solid H2TiO3 and LiOH·H2O react chemically during ball milling process to form a nano-sized precursor powder. Pure β-Li2TiO3 powder can be obtained by calcining the precursor powder at 500 °C, which is half the temperature of conventional solid-state method. The synthesis process is simple and low-cost, which would be more available to achieve batch production among all feasible techniques. The low-temperature calcination will effectively avoid hard particle aggregates and poor sinterability caused by high-temperature heat treatment, which is conducive to prepare ceramics with good properties. The results show that the powder exhibits high sinterability with small particle size of 19 nm. The Li2TiO3 ceramic pebbles sintered at 800 °C have small grain size (470 nm), high relative density (83%) and good crush load (45 N), which has great potential as tritium breeding materials for fusion reactors.  相似文献   

9.
《Ceramics International》2016,42(8):10014-10020
Li4SiO4 pebbles have been widely studied as attractive tritium breeding materials in the fusion reactor blanket of international thermonuclear experimental reactor (ITER). In this work, surfactant-assisted hydrothermal method was first employed to prepare ultrafine ceramic powders for fabricating attractive Li4SiO4 pebbles. SEM analysis revealed that the introduction of sodium dodecyl sulfate could eliminate the particle aggregation to prepare monodispersed precursor powders, and thus generated the green bodies of pebble with homogeneous microstructure, which was helpful to eventually obtain high-quality Li4SiO4 pebbles. Moreover, the effects of sintering temperature on the grain size, relative density, and crush load of Li4SiO4 pebbles were also investigated. Li4SiO4 pebbles sintered at 700 °C had a high crush load (average value 27.39 N), small grain size (average value 0.57 μm), satisfactory density (88.13%T.D.) and abundant pore structure, which were expected to show favorable tritium release behavior as a promising tritium breeding material for fusion reactor blanket.  相似文献   

10.
Li2TiO3 is a vital candidate breeder to solve tritium self-consistency of fusion reaction. In this study, Digital Light Processing (DLP) based on Stereolithography technology was used to fabricate Li2TiO3 pebbles for the first time. Ceramic suspensions with different solid loadings were prepared by mixing modified Li2TiO3 powder with UV-curable premixture. The size error of Li2TiO3 green pebbles was corrected by adjusting the deformation factor of equatorial radius, and the Li2TiO3 green pebbles were successfully fabricated with an accurate size. After sintering processing, the Li2TiO3 pebbles with a uniform diameter of 1.5 mm and better sphericity of 1.01 were yielded. The sintering behavior of Li2TiO3 pebbles were investigated. Results showed that the Li2TiO3 pebbles formed with 35 vol% solid loading, and sintered at 1050 ℃ had a uniform pore distribution, and also had optimal properties, such as high relative density of 93.6 %TD, and prominent crush load of 92.3 N.  相似文献   

11.
《Ceramics International》2021,47(19):26978-26990
In this work, a method combining the spray-drying process and rolling ball method was first selected to mass fabricate Li2TiO3 tritium breeder ceramic pebbles. Herein, we overcome the issues namely complex production, high manufacturing cost, and lower mechanical strength in previous reports. The Li2TiO3 powder with high packing density after the spray drying process will self-agglomerate to form denser structured pebbles during the rolling ball process assisted by sesbania gum binder solution. The stability of slurry, different binder, binder concentrations, the formation mechanism, and the morphology of green pebbles were investigated by using viscometer, SEM. Moreover, the force on the Li2TiO3 green pebbles was also analyzed during the rolling ball process. After the debinding and densification process, the Li2TiO3 pebbles have a uniform diameter of 1.2 mm and good sphericity of 0.97. The Micro-CT instrument showed that the internal structure of the Li2TiO3 pebbles was dense. The experiment's confirmation shows that the Li2TiO3 ceramic pebbles sintered at 1000 °C have optimal mechanical properties such as a crushing load of 108 N and relative density of 92.4%TD, which is much larger than that of the pebbles obtained using traditional methods. This work not only overcomes the core-shell structure but also provides a new platform for better mechanical properties for studying the other materials systems in the future.  相似文献   

12.
Polyvinyl pyrrolidone (PVP) was used as a binder in spray-drying a slurry containing zirconia/alumina composite powder and its influence on granulation and granule deformability was compared with those of polyvinyl alcohol (PVA) and polyethylene glycol–hydroxyethyl cellulose cobinder (PEG–HEC). Although the most spherical solid granules were obtained from the slurry containing PEG–HEC, the granules containing PVP were the most deformable during compaction. It was apparent that a high-viscosity organic additive mixture added to the slurry resulted in highly spherical solid granules, and a low Tg of the mixture led to a high deformability. The flexural strengths of composites prepared from granules containing PVP, PEG–HEC, and PVA were 634, 578, and 468 MPa, respectively, which corresponds to the ascending order of Tg of the binders mixed with plasticizers.  相似文献   

13.
14.
A novel TiO2 thin film was prepared on the ceramic hollow fiber by the sol-gel method using poly(vinylpyrrolidone) (PVP) and polyvinyl alcohol (PVA) as additives. SEM images verified the formation of TiO2 layer with various thickness using different composition of titania sols. The effect of the PVP and PVA contents on the TiO2 sol properties, the separation and the antifouling performance of the ultrafiltration membranes were investigated thoroughly. When the contents of PVP and PVA were 1.0 wt% and 0.8 wt%, respectively, the resultant membrane showed a thickness of 0.55 μm with a pure water flux of 255 L m?2 h?1. In addition, the adherent foulant bovine serum albumin was applied to evaluate the antifouling performance. During the three fouling-recovery cycles, the flux recovery ratio and the flux decay ratio maintained about 99% and 30%. The BSA flux and rejection were still 169 L m?2 h?1 and 96.9% after the cycles, indicating a superior antifouling property.  相似文献   

15.
Poly(vinyl alcohol) (PVA) and poly(N-vinyl pyrrolidone) (PVP) composite hydrogel with interpenetrating polymer networks (IPNs) was prepared by in situ polymerization and compared with pure PVA hydrogel. The prepared IPN hydrogel was characterized by infrared spectroscopy (IR), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy. The mechanical property and cell culture were also tested. The results show that PVP can chemically bond with PVA and form uniform blend hydrogel. The content of PVP can affect the structure, crystallinity, glass transition temperature (Tg), and mechanical property of the hydrogel. The Tg of the PVA hydrogel is 2.7°C while the Tg of the IPN hydrogel is −37°C. The IPN hydrogel has lower glass transition temperature, corresponding to better elastic properties, and has better mechanical performance on stretch and compression than PVA hydrogel. The crystallinity (Xc) of PVA hydrogel and IPN hydrogel is 65.3 and 26.3%, respectively. The DMA curves and XPS analysis suggest that PVA and PVP are well miscible on a molecular level in the IPN hydrogel. The cell proliferation trend demonstrates that the addition of PVP has a positive influence on the cell growth and the IPN hydrogel may be used as a promising biomaterial for artificial cartilage substitute. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

16.
《Ceramics International》2022,48(5):6393-6401
As an excellent promising tritium breeding material, Li2TiO3 ceramic pebbles will be required in large quantities in the future. For this reason, a fully automatic pneumatic eject device based on an improved wet process was employed in the mass-preparation of Li2TiO3 ceramic pebbles. The operating principle of the equipment, the preparation process parameters and the performance of the Li2TiO3 ceramic pebbles have been studied. The results showed that the spheroidization and solidification process of slurries droplets in the molding medium were critical to the sphericity of pebbles, and the size of the green pebbles was related to the droplet dropping speed、the control pressure and the nozzle inner diameter. It is revealed that more than 90% of the pebbles had an eccentricity of less than 1.1, and the diameter distribution was concentrated between 0.98 mm and 1.03 mm. The Li2TiO3 ceramic pebbles with the average grain size of 3.7 μm, the crushing load of 67 N, the relative density of 85.6%, and the porosity of 19.96% can be obtained after sintered at 1100 °C for 2 h. Also, the average pore size was 1.3 μm and the distribution was relatively concentrated. Therefore, this method is expected to meet the future demands of Li2TiO3 ceramic pebbles with excellent performance in bulk quantity.  相似文献   

17.
Lithium titanate (Li2TiO3) is one of the promising candidate breeders for tritium self-sufficiency of deuterium(D)-tritium(T) fusion reaction. The differences in powder synthesis methods have a great impact on the properties of Li2TiO3 powders and the performance of Li2TiO3 ceramic pebbles. In this study, the Li2TiO3 powders were successfully synthesized by hydrothermal method and solid-state method, and then the pebbles were fabricated by the agar-based wet method. The mechanism of hydrothermal synthesis of Li2TiO3 powder was discussed. For the hydrothermal method, the Li2TiO3 powder with single phase can be obtained when the rate of Li/Ti = 2.4, and the powder presented two different morphology, which involved two reaction mechanisms, including in-situ phase transformation mechanism and dissolution-precipitation mechanism, the phase transformation from α-Li2TiO3 to β-Li2TiO3 accomplished at 400°C, which is lower than that of 750°C for solid-state method. Li2TiO3 pebbles prepared by the hydrothermal-wet method had a uniform pore distribution, an optimal grain size of 2.7 μm, a crushing load of 58.6 N, and relative density of 90.2%, respectively. In comparison, pebbles prepared by the solid-state-wet method also had better mechanical properties, which the crushing load and relative density were 53.9 N and 86.9% respectively under the optimal fabrication conditions.  相似文献   

18.
This work aimed to manufacture bioplastics with mechanical and electrical properties for monitoring the Rhizopus stolonifer growth in tomato fruit packaging. Bioplastics were based on chitosan/polyvinyl alcohol (Ch/PVA), chitosan/polyvinyl pyrrolidone (Ch/PVP), and nanoparticles (NPs) of plant extracts at 10% and 30% of concentrations. Bioplastics were exposed to tomato inoculated with R. stolonifer for 6 d at 25°C. Water vapor permeability (WVP), mechanical properties, FTIR, UV–vis, morphology, electrical resistance of bioplastics, and the NPs size were assessed. In bioplastics added with plant extracts, 1.5 times more WVP than in the control group (18–35 gs−1m−1Pa−1) were quantified. Ch/PVA bioplastic showed 51% more tensile strength, 44% more elongation at break, and 40% more Young's modulus than Ch/PVP, regardless of the plant extract. The electrical resistance in Ch/PVA bioplastics with 30% mushroom extract and 10% radish allowed the differentiation between inoculated (109–1010 Ω) and non-inoculated tomatoes (1010–1011 Ω). The FTIR assay confirmed the presence of each compound used in the bioplastic, and UV–vis confirmed phenols at 300 nm. The NPs measured less than 50 nm. Only Ch/PVA with 30% mushroom and 10% radish can be useful to monitor fungi in tomatoes based on their electrical behavior.  相似文献   

19.
Firstly, preparation of porous polyvinyl alcohol (PVA) spheres were investigated in detail by phase inversion method using N,N-dimethylacetamide (DMAc) and polyvinylpyrrolidone (PVP) as pore-forming additives. The morphology and pore structure of PVA spheres were characterized by SEM and BET measurements. It was found that the addition of DMAc and PVP increased the pore volume and the surface pore size of PVA sphere respectively. The maximum surface area of the porous PVA sphere reached 220 m2/g. Secondly; the synthesis of photoactive TiO2 NPs (anatase type) at the low temperature was developed by controlling the aging process of the TiO2 precursors. The crystallinity and photoactivity of TiO2 NPs increased with the aging time. Finally, TiO2 NPs/PVA composite spheres were prepared by immersing PVA sphere into TiO2 precursor solution. Their structures were characterized by XRD pattern, TEM and TGA measurement. It was found that TiO2 NPs were successfully immobilized into PVA spheres. The photodegradation of methyl orange (MO) under UV light by TiO2/PVA spheres showed a good photocatalytic efficiency. Moreover, TiO2/PVA spheres can be easily regenerated by the repeated immersion process. Overall, the porous TiO2/PVA sphere displays a good photoactive property and an advantage of easier recovery, which facilitates its application in large-scale wastewater treatment.  相似文献   

20.
In this paper, a method combining hydrolysis of tetrabutyl orthotitanate (TBOT) and solvothermal reaction was first used to fabricate nanostructured Li2TiO3 tritium breeder ceramic pebbles. Initially, superfine nanostructured Li2TiO3 powders were synthesized with average particle size of about 10?nm, according to TEM. The surface area of precursor particles synthesized via this method was found to be 115.85?m2/g by BET analysis, which is much larger than that of the product obtained using traditional methods. The results showed that precursor particles had high sintering activity. XRD pattern revealed that the phase transition temperature for monoclinic phase Li2TiO3 prepared by this method was nearly 450?°C, which was the lowest phase transition temperature reported among all wet chemical methods to date. Subsequently, investigation of ceramic sintering demonstrated that Li2TiO3 ceramic pebbles with desired nano-crystalline sizes (27.98 ~ 55.03?nm) were obtained by sintering at 500 ~ 600?°C for 4?h. The possible mechanisms were proposed based on the reaction processes of TBOT hydrolysis, solvothermal reaction and sintering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号