首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The homogeneously deposition of quantum dots (QDs) on the mesoporous or one‐dimensional TiO2 film with a well‐covered layer has become one major challenge in quantum dot‐sensitized solar cell (QDSSC). In this study, one‐dimensional TiO2 nanorod arrays based photoanode prepared by a simple linker‐assisted SILAR method is studied. The influence of the short organic ligand (TGA) on the homogeneity of QDs on TiO2 nanorod arrays is discussed and the photoelectrochemical performance of QDSSC is evaluated by UV–vis absorbance spectroscopy, current–voltage performance and electrochemical impedance spectroscopy. The results show that the TGA ligand can act as an efficient bridge between CdS QDs and TiO2, whereas the content and particle size of the QDs can be easily tuned by controlling the dipping time and SILAR cycle. Owing to the presence of TGA, the charge‐transfer rate at CdS QDs and TiO2 interfacial region is noticeable enhanced.  相似文献   

2.
《Ceramics International》2023,49(6):8820-8826
The effect of co-sensitization and ZnS passivation on the photovoltaic performance of CdS quantum dot sensitized solar cells (QDSSCs) were investigated. The deposition of CdS, CdSe quantum dots (QD) and ZnS passivation on TiO2 photoanode was carried out by successive ionic layer adsorption and reaction (SILAR) method. CdS/CdSe co-sensitization developed two staggered type-II heterojunctions at TiO2/CdS and CdS/CdSe interfaces and resulted a cascade energy band structure. This suitable band alignment facilitated the double charge transfer mechanism at each heterojunction and transported the electrons easily into the photoanode. The narrow bandgap sensitizers CdS and CdSe significantly improved the potential utilization of solar spectrum with more charge carrier generation. ZnS passivation on QD surface suppressed electrode/electrolyte interfacial charge recombination and facilitated more electron injection from QDs into TiO2 photoanode. The EDAX elemental mapping results inferred that CdS, CdSe and ZnS have efficiently covered the TiO2 surface. TiO2/CdS and CdS/CdSe interfaces and the amorphous nature of ZnS could be verified with HRTEM images. Hence, the co-sensitization and surface passivation played a significant role to enhance the PCE of CdS QDSSC from 1.9% to 4.05%.  相似文献   

3.
We prepared highly ordered titanium dioxide nanotube arrays (TNAs) by anodizing Ti foils in F containing electrolyte. The thickness and dye loading amount of TNAs were 26 μm and 1.06 × 10−7 mol cm−2, respectively. TiO2 nanoparticles (TNPs) were electrophoretically deposited on the inner wall of nanotube to produce coated nanotube arrays (TNAP). The dye loading was increased to 1.56 × 10−7 mol cm−2, and the electron transport rate improved. TNAs and TNAP were sensitized with ruthenium dye N3 to yield dye-sensitized TiO2 nanotube solar cells. The power conversion efficiency of TNA-based dye-sensitized solar cells (DSSCs) was 4.28%, whereas the efficiency of TNAP-based DSSCs increased to 6.28% when illuminated from the counter electrode. The increase of power conversion efficiency of TNAP-based DSSCs is ascribed to the increased surface area of TNAs and the faster electron transport rate.  相似文献   

4.
We report that the efficiency of ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag inverted polymer solar cells (PSCs) can be improved by dispersing CdS quantum dot (QD)-sensitized TiO2 nanotube arrays (TNTs) in poly (3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) layer. The CdS QDs are deposited on the TNTs by a chemical bath deposition method. The experimental results show that the CdS QD-sensitized TNTs (CdS/TNTs) do not only increase the light absorption of the P3HT:PCBM layer but also reduce the charge recombination in the P3HT:PCBM layer. The dependence of device performances on cycles of CdS deposition on the TNTs was investigated. A high power conversion efficiency (PCE) of 3.52% was achieved for the inverted PSCs with 20 cyclic depositions of CdS on TNTs, which showed a 34% increase compared to the ITO/nc-TiO2/P3HT:PCBM/MoO3/Ag device without the CdS/TNTs. The improved efficiency is attributed to the improved light absorbance and the reduced charge recombination in the active layer.  相似文献   

5.
An improvement in the power conversion efficiency (PCE) of the inverted organic solar cell (ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag) is realized by depositing CdS quantum dots (QDs) on a nanocrystalline TiO2 (nc-TiO2) film as a light absorption material and an electron-selective material. The CdS QDs were deposited via a chemical bath deposition (CBD) method. Our results show that the best PCE of 3.37% for the ITO/nc-TiO2/CdS/P3HT:PCBM/PEDOT:PSS/Ag cell is about 1.13 times that (2.98%) of the cell without CdS QDs (i.e., ITO/nc-TiO2/P3HT:PCBM/PEDOT:PSS/Ag). The improved PCE can be mainly attributed to the increased light absorption and the reduced recombination of charge carriers from the TiO2 to the P3HT:PCBM film due to the introduced CdS QDs.  相似文献   

6.
TiO2 nanotube arrays are very attractive for dye-sensitized solar cells (DSSCs) owing to their superior charge percolation and slower charge recombination. Highly ordered, vertically aligned TiO2 nanotube arrays have been fabricated by a three-step anodization process. Although the use of a one-dimensional structure provides an enhanced photoelectrical performance, the smaller surface area reduces the adsorption of dye on the TiO2 surface. To overcome this problem, we investigated the effect of DSSCs constructed with a multilayer photoelectrode made of TiO2 nanoparticles and TiO2 nanotube arrays. We fabricated the novel multilayer photoelectrode via a layer-by-layer assembly process and thoroughly investigated the effect of various structures on the sample efficiency. The DSSC with a four-layer photoelectrode exhibited a maximum conversion efficiency of 7.22% because of effective electron transport and enhanced adsorption of dye on the TiO2 surface.  相似文献   

7.
In this study, TiO2 nanorod arrays (TNR), Ag quantum dots (QDs) sensitized with TNR TiO2/Ag, bismuth oxyhalide (BiOI) nanosheets, and Ag QDs co-modified with TNR and TiO2/BiOI/Ag (TBA) were prepared by a stepwise process. The morphological, structural, compositional, optical, photocatalytic (PC), and photoelectrochemical (PEC) properties of the samples were investigated. The TBA-2 sample exhibited the highest photocurrent density (281.8 μA/cm2) and photodegradation efficiency (93.3%), with values 9.7 times and 2.25 times higher than those for TNR, respectively. The improvement in sample performance can be attributed to the formation of a heterojunction between BiOI and TiO2, thereby enhancing the absorption of visible light and improving the charge separation efficiency; Ag QDs limit interfacial electron-hole pair recombination. The experimental results show that TBA can effectively promote light-induced carrier transport and visible light absorption, while inhibiting the recombination rate of the electron-hole pairs, PEC, and PC.  相似文献   

8.
《Ceramics International》2018,44(18):22671-22679
Here we report on the effect of Ti substrate surface roughness on the morphology of anodized TiO2 nanotube arrays (TNAs), as well as their crystal structure and photocurrent response measured in the backside illuminated dye-sensitized solar cells (DSSCs). TNAs grown on Ti substrates with higher roughness exhibited a non-uniform morphology, which encompassed both thick and thin-walled nanotubes. Reduction of the substrate roughness by different polishing methods causes the morphology of all of nanotubes to become uniform with thin wall thickness. Moreover, the compressive strain was reduced by decreasing the roughness according to the X-ray diffraction patterns. DSSCs fabricated using TNAs grown on the smoothest substrate showed a significantly higher conversion efficiency than that of the TNAs grown on the roughest substrate by a factor of 100%. Furthermore, TNAs grown on the smoothest substrate showed higher electron lifetime and lower recombination. Therefore, it has an enhancing effect on the photocurrent response of the anodized TNAs in backside illuminated DSSCs.  相似文献   

9.
Highly ordered and vertically oriented TiO2 nanotube arrays were prepared and applied to dye sensitized solar cell (DSSC) as working electrodes. The nanotube arrays were fabricated using atomic layer deposition and AAO template. The two types of nanotube's end, closed-end and open-end, were produced by reactive ion etching (RIE) process. The structure of nanotube arrays was characterized by FE-SEM, TEM, and XRD. DSSCs using the TiO2 nanotube arrays as working electrodes were fabricated and characterized. The DSSCs prepared from the TiO2 nanotubes with open end exhibited higher power conversion efficiency of 1.17% than that with closed end. This result is attributed to that the open-ended TiO2 nanotubes provided larger surface area, leading to more amount of dye molecules to adsorb followed by the higher light absorption.  相似文献   

10.
《Ceramics International》2016,42(10):12194-12201
TiO2 nanoparticles are typically employed to construct the porous films for quantum dot-sensitized solar cells (QDSCs). However, undesirable interface charge recombination at grain boundaries would hinder the efficient electron transport to the conducting substrate, giving rise to the decline of open-circuit voltage (Voc). In this work, vertically aligned architectures of oriented one-dimensional (1D) TiO2 nanorod arrays hydrothermally grown on substrates pave a way in designing highly efficient QDSCs with efficient radial-directional charge transport. SEM, TEM, XRD, and Raman spectroscopy were employed to characterize the as-prepared TiO2 nanorods, showing the rutile phase with single-crystalline structure. The homogeneous deposition of CdS/CdSe QDs on the surface of TiO2 nanorods has been achieved by in-situ grown strategies (i.e., successive ionic layer absorption and reaction, and chemical bath deposition). An extremely high Voc value up to 0.77 V has been achieved for CdS/CdSe QDSCs based on the well-ordered 1D nanorod arrays. To the best of our knowledge, it is the highest Voc reported for TiO2-based QDSCs. Dependencies of photovoltaic performance, optical absorption, and interfacial charge behavior on the length of nanorods were systematically investigated. A 1.7 μm nanorod-array photoelectrode-based QDSC delivers a remarkable power conversion efficiency up to 3.57% under simulated AM 1.5 100 mW cm−2 illumination, attributed to the balance of competition between the increase of QD loading and suppression of interfacial recombination. This work highlights the combination of QDs with high absorption coefficient 1D architectures possessing efficient charge transport for constructing high efficiency solar cells.  相似文献   

11.
CuInS2 quantum dots (QDs) were deposited onto TiO2 nanorod arrays for different cycles by using successive ionic layer adsorption and reaction (SILAR) method. The effect of SILAR cycles on the light absorption and photoelectrochemical properties of the sensitized photoelectrodes was studied. With optimization of CuInS2 SILAR cycles and introduction of In2S3 buffer layer, quantum dot-sensitized solar cells assembled with 3-μm thick TiO2 nanorod film exhibited a short-circuit current density (Isc) of 4.51 mA cm−2, an open-circuit voltage (Voc) of 0.56 V, a fill factor (FF) of 0.41, and a power conversion efficiency (η) of 1.06%, respectively. This study indicates that SILAR process is a very promising strategy for preparing directly anchored semiconductor QDs on TiO2 nanorod surface in a straightforward but controllable way without any complicated fabrication procedures and introduction of a linker molecule.  相似文献   

12.
Front-side illuminated CdS quantum dots (QDs) sensitized solar cells (QDSSCs) based on TiO2 nanotube arrays (TNTAs) were fabricated. The free-standing TNTAs (f-TNTAs) membranes were obtained from anodic oxidized Ti foils by self-detaching technique and then transferred to FTO glass substrates to form photoanodes. CdS QDs were loaded on TNTAs by sequential chemical bath deposition approach. Scanning electron microscope (SEM) results indicated that the morphology and structure of TNTAs membranes did not change in detaching and transferring process. Power conversion efficiency of the devices from the front-side illumination mode is 1.47 %, which is much higher than that (0.34 %) of the back-side illumination mode owing to the markedly improved light absorption.  相似文献   

13.
14.
A nanospheroidal TiO2 mesoporous layer combined with cadmium sulfide (CdS) quantum dots (QDs) as a sensitizer was firstly utilized for solar cell applications, resulting in an efficiency of 1.2% at a 1 sun condition. CdS quantum dots (18 nm) were attached to the TiO2 nanospheroidal electrode by using a chemical bath deposition technique. The influence of surface treatment using dimethyl formamide on the interconnectivity of the TiO2 nanospheroidal electrodes was investigated. The charge transport of TiO2/CdS QDs/electrolyte sandwich-type cells was characterized by electrochemical impedance spectroscopy and the device performance was compared with conventional nanospherical TiO2 (Degauusa P25) electrodes. The electrodes with nanospheroidal morphology showed better device performance than the P25 nanoparticle electrodes primarily due to both better connectivity among nanospheroidal TiO2 particles and larger mesopores, resulting in deeper penetration of the electrolyte in QD-sensitized solar cells.  相似文献   

15.
Self-organized V-N co-doped TiO2 nanotube arrays (TNAs) with various doping amount were synthesized by anodizing in association with hydrothermal treatment. Impacts of V-N co-doping on the morphologies, phase structures, and photoelectrochemical properties of the TNAs films were thoroughly investigated. The co-doped TiO2 photocatalysts show remarkably enhanced photocatalytic activity for the CO2 photoreduction to methane under ultraviolet illumination. The mechanism of the enhanced photocatalytic activity is discussed in detail.  相似文献   

16.
In this study, we used the electrochemical anodization to prepare TiO2 nanotube arrays and applied them on the photoelectrode of dye-sensitized solar cells. In the field emission scanning electron microscopy analysis, the lengths of TiO2 nanotube arrays prepared by electrochemical anodization can be obtained with approximately 10 to 30 μm. After titanium tetrachloride (TiCl4) treatment, the walls of TiO2 nanotubes were coated with TiO2 nanoparticles. XRD patterns showed that the oxygen-annealed TiO2 nanotubes have a better anatase phase. The conversion efficiency with different lengths of TiO2 nanotube photoelectrodes is 3.21%, 4.35%, and 4.34% with 10, 20, and 30 μm, respectively. After TiCl4 treatment, the efficiency of TiO2 nanotube photoelectrode for dye-sensitized solar cell can be improved up to 6.58%. In the analysis of electrochemical impedance spectroscopy, the value of Rk (charge transfer resistance related to recombination of electrons) decreases from 26.1 to 17.4 Ω when TiO2 nanotubes were treated with TiCl4. These results indicate that TiO2 nanotubes treated with TiCl4 can increase the surface area of TiO2 nanotubes, resulting in the increase of dye adsorption and have great help for the increase of the conversion efficiency of DSSCs.  相似文献   

17.
《Ceramics International》2023,49(13):22030-22037
In this work, gallium nitride (GaN) is employed for the first time to modulate the charge dynamics of quantum dot-sensitized solar cells (QDSCs). An ultrathin GaN layer has been coated on the surface of both mesoporous TiO2 photoanode and quantum dots (QDs) at 240 °C by plasma-enhanced atomic layer deposition (PEALD) approach. It is revealed that there exists a stepped energy level alignment among the as-prepared TiO2 film, GaN layer and QDs, which accelerates the extraction and collection of photogenerated electrons. Meanwhile, a type-II core-shell QD/GaN structure is formed benefiting from the self-limiting reactions of PEALD, resulting in an enhanced light absorption and a redshift of absorption edge. In addition, the dense GaN layer can also effectively inhibit the reverse transfer of photogenerated electrons from TiO2 to QDs or electrolyte while improving the connection between TiO2 and QDs. Ultimately, the QDSCs with a 0.68 nm-thick GaN layer achieve a 29% increase of short-circuit current density and enhanced device efficiency, even with reduced fill factor. This work has shown the multi-functions of GaN in regulating the charge dynamics of QDSCs as well as the potential advantages in replacing TiO2 as photoanode for electronic extraction and transport.  相似文献   

18.
Different compositions of TiO2–BaTiO3 nanocomposites are synthesized with various weight ratios for dye‐sensitized solar cell (DSSC) applications. TiO2 and BaTiO3 nanoparticles (NPs) are synthesized by sol‐gel and solvothermal methods, respectively and are employed as the photoanode electrodes. BaTiO3 NPs have pure cubic perovskite crystal structure with an average size of 20‐40 nm, while TiO2 NPs show pure anatase phase with 15‐30 nm size. The power conversion efficiency (PCE) enhancement of the cells is first attained by controlling the thickness of the films for light harvesting improvement. The fabricated DSSC composed of pure BaTiO3 NPs with an optimal thickness of 25 μm shows efficiency of 6.83%, whereas that made of pure TiO2 NPs with 14 μm thickness has cell efficiency of 7.24%. Further improvement of cell efficiency is achieved by preparation of binary oxide nanocomposites using TiO2 and BaTiO3 NPs with various weight ratios. The highest PCE of 9.40% is obtained for the nanocomposite with TiO2:BaTiO3=85:15 (wt%). The enhancement is assigned to less recombination of photo‐generated electrons and higher incident photon to current conversion yield as a result of rapid charge collection and higher dye sensitization.  相似文献   

19.
Ze-Quan Lin 《Electrochimica acta》2010,55(28):8717-8723
Shell-core nanostructured ZnS/CdS quantum dots (QDs) were assembled uniformly on the surface of TiO2 nanotube arrays by sequence chemical bath deposition (CBD) of CdS and ZnS in alcohol solution system. The morphology and chemical composition of the obtained composite thin films were characterized by scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray spectroscopy. The effect of solvent and immersion cycles for the photoanode preparation on the photoelectrochemical activity and photogenerated cathodic protection property was investigated. It is found that the nanostructured CdS QDs (20 cycles) coated on TiO2 nanotube arrays show a remarkably enhanced photoelectrochemical activity. The coating of ZnS QD shells (5 cycles) is able to improve the stability of the CdS@TiO2 photoanode under white-light irradiation. After the irradiation light is turned off, the photogenerated cathodic protection of 403 stainless steel (403SS) can be remained for several hours.  相似文献   

20.
Highly ordered, vertically oriented TiO2 nanowire arrays (TNAs) are synthesized directly on transparent conducting substrate by solvothermal procedure without any template. The X-ray diffraction (XRD) pattern shows that TiO2 array is in rutile phase growing along the (0 0 2) direction. The field-emission scanning electron microscopy (FE-SEM) images of the samples indicate that the TiO2 array surface morphology and orientation are highly dependent on the synthesis conditions. In a typical condition of solvothermal at 180 °C for 2 h, the TNAs are composed of nanowires 10 ± 2 nm in width, and several nanowires bunch together to form a larger secondary structure of 60 ± 10 nm wide. Dye-sensitized solar cell (DSSC) assembled with the TNAs grown on the FTO glass as photoanode under illumination of simulated AM 1.5G solar light (100 mW cm−2) achieves an overall photoelectric conversion efficiency of 1.64%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号