首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To obtain better electromagnetic wave absorbing property, it is vitally necessary to develop novel ceramics with not only high dielectric loss but also low dielectric constant. Si3N4–SiBC, a composite ceramic with such dielectric properties, was fabricated by infiltrating SiBC into porous Si3N4 ceramic via low pressure chemical vapor infiltration. The high dielectric loss and the low dielectric constant are attributed to the unique microstructure of SiBC, which also leads to a very excellent wave-absorbing property of Si3N4–SiBC ceramic, attaining a minimal reflection coefficient of ?28 dB. Besides, the Si3N4–SiBC ceramic also shows a high mechanical property. Therefore, the Si3N4–SiBC ceramic exhibits great potential as an excellent functional and structural ceramic.  相似文献   

2.
Si3N4/O′–SiAlON composite ceramics with superior oxidation resistance properties were fabricated by a repeated sintering method. The effects of sintering time on the phase evolution, microstructure, and oxidation resistance properties of the Si3N4/O′–SiAlON composite ceramics were investigated. The results indicated that the content of the O′–SiAlON phase and the densification of Si3N4/O′–SiAlON composite ceramics increased after two-time sintering. Furthermore, the thickness of the oxide layer of the Si3N4/O′–SiAlON composite ceramics after oxidation at 1100–1500°C for 30 h was not significant. Compared to the oxidation weight gain after the one-time sintering process, the oxidation weight gain of Si3N4/O′–SiAlON composite ceramics was 0.432 mg/cm2 after two-time sintering when oxidized at 1500 C for 30 h, which was reduced by 43.3%. The mechanism of the improved oxidation resistance properties was ascribed to the formation of more O′–SiAlON and the enhancement of the densification.  相似文献   

3.
《应用陶瓷进展》2013,112(2):49-54
Abstract

Ceramic matrix composites containing TiB2 as a particulate phase have been produced by hot pressing. The problems of the reactivity of TiB2 with the Si3 N4 matrix and with the sintering environment have been successfully addressed. A novel dual atmosphere sintering profile combined with low temperature hot pressing has been used to successfully produce fully dense materials. The effect of TiB2 addition on mechanical properties has been investigated. Composites containing TiB2 show significant improvements in hardness and fracture toughness. The addition of TiB2 at a level of 40 vol.-% raises the conductivity of the composite to a level where electro-discharge machining (EDM) is possible. A comprehensive study of the application of EDM has been carried out and the optimum machining conditions have been identified. Under these conditions Si3 N4–TiB2 composites have been shaped with relative ease and proved to be ‘robust’ materials under EDM.  相似文献   

4.
《Ceramics International》2019,45(14):16809-16813
When used as implants, Al2O3 is unable of directly achieving good chemical bonding with soft and hard tissues. To overcome this problem, SiAlON–Al2O3 ceramics were prepared in this study by direct nitridation. Phase composition, porosity, bulk density, and compression strengths were examined, and biological properties were evaluated by cell culture on ceramic surface. Major phase of SiAlON–Al2O3 ceramics was identified as Si4Al2O2N6, formed by reaction of Si, Al and Al2O3 under nitrogen atmosphere at high temperature. As Al2O3 content increased, porosity and compressive strength decreased. Therefore, Si4Al2O2N6 phase could improve sintering, leading to formation of composites with better properties. The porosity and compression strength were found suitable for requirement of biomaterials. Cell culture experiments showed that cells could proliferate and survival well on ceramic surface, indicating good biocompatibility of Si4Al2O2N6 phase in SiAlON–Al2O3 ceramics. Overall, these data look promising and might provide novel strategies for development of future SiAlON–Al2O3 bioceramics.  相似文献   

5.
Si3N4–SiCN composite ceramics were successfully fabricated through precursor infiltration pyrolysis (PIP) method using polysilazane as precursor and porous Si3N4 as preform. After annealed at temperatures varying from 900 °C to 1400 °C, the phase composition of SiCN ceramics, electrical conductivity and dielectric properties of Si3N4–SiCN composite ceramics over the frequency range of 8.2–12.4 GHz (X-band) were investigated. With the increase of annealing temperature, the content of amorphous SiCN decreases and that of N-doped SiC nano-crystals increases, which leads to the increase of electrical conductivity. After annealed at 1400 °C, the average real and imaginary permittivities of Si3N4–SiCN composite ceramics are increased from 3.7 and 4.68 × 10?3 to 8.9 and 1.8, respectively. The permittivities of Si3N4–SiCN composite ceramics show a typical ternary polarization relaxation, which are ascribed to the electric dipole and grain boundary relaxation of N-doped SiC nano-crystals, and dielectric polarization relaxation of the in situ formed graphite. The Si3N4–SiCN composite ceramics exhibit a promising prospect as microwave absorbing materials.  相似文献   

6.
Silicon-nitride (Si3N4) components were joined under vacuum at 1100 °C for 10 min using Si–Mg composite fillers with Mg contents (XMg) that ranged from 0 at.% to 59 at.%. The Si3N4/Si3N4 joints were fabricated via Si layer formation at the joint interface; the molten Si–Mg liquid was transformed into a solid Si layer after Mg-evaporation-induced isothermal solidification. The joint tensile strength at room temperature increased considerably when XMg exceeded the liquidus composition of 37 at.% because of the enhanced densification/thinning of the Si layer. In these cases, some Mg atoms reacted with Si3N4 to form a fine-grained MgSiN2-based layer, whereas relatively large (>0.1 μm) and smaller MgO precipitates (<10 nm) were observed in the Si layer. At a high XMg, the MgO precipitates were arranged in a network-like structure, which improved the fracture strength of the Si layer. The joints with a high strength at room temperature were examined using a three-point bending test at 1200 °C in air and endured a maximum fracture stress of ~200 MPa, which confirmed their potential for use in oxidizing atmospheres at least 100 °C above the bonding temperature.  相似文献   

7.
Porous silicon nitride (Si3N4) ceramics incorporated with hexagonal boron nitride (h-BN) and silica (SiO2) nanoparticles were fabricated by pressureless-sintering at relatively low temperature, in which stearic acid was used as pore-making agent. Bending strength at room and high temperatures, thermal shock resistance, fracture toughness, elastic modulus, porosity and microstructure were investigated in detail. The mechanical properties and thermal shock resistance behavior of porous Si3N4 ceramics were greatly influenced by incorporation of BN and SiO2 nanoparticles. Porous BN–SiO2–Si3N4 composites were successfully obtained with good critical thermal shock temperature of 800 °C, high bending strength (130 MPa at room temperature and 60 MPa at 1000 °C) and high porosity.  相似文献   

8.
A dense SiC nanowires-toughened α-Si3N4 coating was prepared using a two-step technique for protecting porous Si3N4 ceramic against mechanical damage, and effect of SiC nanowires content on microstructures and properties of the coating were investigated. XRD, SEM and TEM analysis results revealed that as-prepared coatings consisted of α-Si3N4, O'-Sialon, SiC nanowires and Y–Al–Si–O–N glass phase. Furthermore, Vickers hardness of the coated porous Si3N4 ceramics increased gradually with the increasing SiC nanowires content from 0 to 10 wt%, which is attributed to the gradual improvement in intrinsic elastic modulus (E), hardness (H) and H3/E2 of the coatings. But, when the SiC nanowires content was 15 wt%, the thickness of the coating became relatively thinner, so that its protective ability was weakened and Vickers hardness started to decrease accordingly. Meanwhile, the assistance of SiC nanowires enhanced fracture toughness of the coatings obviously because SiC nanowires in the coatings can produce various toughening mechanisms during mechanical damage. When the SiC nanowires content was 10 wt%, its fracture toughness reached the maximum value, which was 6.27 ± 0.05 MPa·m1/2.  相似文献   

9.
Mechanical and tribological properties of nanocomposites with silicon nitride matrix with addition of 1 and 3 wt% of various types of graphene platelets were studied. The wear behavior was observed by means of the ball-on-disk technique with a silicon nitride ball used as the tribological counterpart at room temperature in dry sliding. Coefficient of friction and specific wear rates were calculated and related to the damage mechanisms observed in the wear tracks. The measured properties were then assessed with respect to the type and volume fraction of the graphene additives. It is shown that addition of such amounts of carbon phases does not lower the coefficient of friction. Graphene platelets seem to be integrated into the matrix very strongly and they do not participate in lubricating processes. The best performance offers materials with 3 wt% of larger sized graphene, which have the highest wear resistance.  相似文献   

10.
Si3N4–TiN composites were successfully fabricated via planetary ball milling of 70 mass% Si3N4 and 30 mass% Ti powders, followed by spark plasma sintering (SPS) at 1250–1350 °C. The sintering mechanism for SPS was a hybrid of dissolution–reprecipitation and viscous flow. The electrical resistivity decreased with increasing sintering temperature up to a minimum at 1250 °C and then increased with the increasing sintering temperature. The composites prepared by SPS at 1250–1350 °C could be easily machined by electrical discharge machining. Composite prepared by SPS at 1300 °C showed a high hardness (17.78 GPa) and a good machinability.  相似文献   

11.
《Ceramics International》2017,43(2):2150-2154
Sintered Si3N4 ceramics were prepared from an ɑ-Si3N4/β-Si3N4 whiskers composite powder in-situ synthesized via carbothermal reduction at 1400–1550 °C in a nitrogen atmosphere from SiO2, C, Ni, and NaCl mixture. Reaction temperatures and holding time for the composite powder, and mechanical properties of sintered Si3N4 were investigated. In the synthesized composite powder, the in-situ β-Si3N4 whiskers displayed an aspect ratio of 20–40 and a diameter of 60–150 nm, which was mainly dependent on the synthesis temperature and holding time. The flexural strength, fracture toughness and hardness of the sintered Si3N4 material reached 794±136 MPa, 8.60±1.33 MPa m1/2 and 19.00±0.87 GPa, respectively. The in-situ synthesized β-Si3N4 whiskers played a role in toughening and strengthening by whiskers pulling out and crack deflection.  相似文献   

12.
《Ceramics International》2016,42(7):8044-8050
The design and fabrication of silicon germanium (SiGe) thermoelectric elements, typically including the selection of electrode and intermediate materials, the process of joining electrode and intermediate layer onto thermoelectric materials, are the major challenge for SiGe thermoelectric device technology. In this study, W–Si3N4 and TiB2–Si3N4 composites are designed as the electrode and intermediate layer, respectively, and the W–i3N4/TiB2–Si3N4/p–Si80Ge20B0.6 joints are fabricated by a one-step spark plasma sintering process. The influences of the composition of TiB2–Si3N4 intermediate layer on the interfacial structure, contact resistivity and interfacial thermal stability are investigated. The interfacial thermal stability is improved with increasing Si3N4 content in TiB2–Si3N4 intermediate layer due to the reduced mismatch of coefficients of thermal expansion between the intermediate layer and SiGe. On the other hand, the contact resistivity increases with the rising of Si3N4 content due to the weakened TiB2/SiGe ohmic contact, which degrades the device efficiency. As the balanced point, the intermediate layer with the composition of 80 vol% TiB2+20 vol% Si3N4 provides good interfacial thermal stability and moderately small contact resistivity (~75 μΩ cm2 after aging at 1000 °C for 120 h) simultaneously, which is an optimized intermediate layer composition for W–Si3N4/TiB2–Si3N4/p–Si80Ge20B0.6 thermoelectric element. The TiB2–Si3N4 intermediate layer has excellent chemical stability to both W–Si3N4 electrode and SiGe thermoelectric material at high temperatures, which contributes to the sharp interface of the joint and effectively prevents the inter-diffusion between the electrode and the SiGe.  相似文献   

13.
The influence of various rare-earth oxide additives and the addition of SiC nanoparticles on the thermal shock resistance of the Si3N4 based materials was investigated. The location of SiC particles inside the Si3N4 grains contributed to a higher level of residual stresses, which caused a failure at the lower temperature difference compared to the composites with a preferential location of the SiC at the grain boundaries. A critical temperature difference increased with an increasing ionic radius of RE3+ for both the composites and the monoliths. The critical temperature difference for the composite (580 °C) and the monolith (680 °C) sintered with La2O3 was significantly higher compared to the composite and the monolith doped with Lu2O3 (430 °C). A good agreement was found between the results of the critical temperature difference estimated by the indentation quench test and that obtained by the strength retention method.  相似文献   

14.
In this paper, Si–C–N–Fe magnetoceramics were obtained by pyrolysis of iron-modified polysilazane (PFSZ) precursors which were synthesized by using polysilazane (PSZ) and iron (III) acetylacetonate (Fe(acac)3) as starting materials. The as-synthesized PFSZ precursors were characterized by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography. The polymer-to-ceramic conversion of the PFSZ was studied by FT-IR and thermal gravimetric analysis. It is found that the ceramic yield of the PFSZ precursor is ca. 25% higher than that of the original PSZ. The crystallization behavior, microstructures and magnetic properties of the PFSZ-derived Si–C–N–Fe magnetoceramics were studied by techniques such as X-ray diffraction, transmission electron microscopy and vibrating sample magnetometer. The results indicate that the formed α-Fe nanoparticles are uniformly dispersed in amorphous Si–C–N(O) matrix, leading to the soft magnetization of the resultant Si–C–N–Fe ceramics. Moreover, the iron content and the magnetic properties of the Si–C–N–Fe ceramic could be easily controlled by the amount of Fe(acac)3 in the precursor.  相似文献   

15.
In this work different loading volumes (10 and 20 vol.%) of alumina and zirconia were suspended in selected liquid carriers to prepare suspensions. These suspensions were infused through inner and outer capillaries of a co-axial nozzle arrangement, which was then subjected to an electric field. The rate at which these suspensions were perfused (flow rate) and the applied voltage was varied during the experiments. Under optimal conditions, stable cone and jet formation was achieved for selected co-flowing suspensions which subsequently breaks-up into ceramic–ceramic composite droplets. Thus, droplets containing alumina and zirconia were produced and the resulting relics were collected on quartz substrates. These were sintered at 1200 °C and analysed by optical and scanning electron microscopy. The relic size increased as a function of the volume loading and layered encapsulation (shown using SEM and EDX) of alumina by zirconia and vice-versa, using this method, is achievable.  相似文献   

16.
Porous Si3N4–SiC composite ceramic was fabricated by infiltrating SiC coating with nano-scale crystals into porous β-Si3N4 ceramic via chemical vapor infiltration (CVI). Silica (SiO2) film was formed on the surface of rod-like Si3N4–SiC grains during oxidation at 1100 °C in air. The as-received Si3N4–SiC/SiO2 composite ceramic attains a multi-shell microstructure, and exhibits reduced impedance mismatch, leading to excellent electromagnetic (EM) absorbing properties. The Si3N4–SiC/SiO2 fabricated by oxidation of Si3N4–SiC for 10 h in air can achieve a reflection loss of ?30 dB (>99.9% absorption) at 8.7 GHz when the sample thickness is 3.8 mm. When the sample thickness is 3.5 mm, reflection loss of Si3N4–SiC/SiO2 is lower than ?10 dB (>90% absorption) in the frequency range 8.3–12.4 GHz, the effective absorption bandwidth is 4.1 GHz.  相似文献   

17.
In this study, two Au–Ni–V filler metals were used to braze Si3N4 ceramic in the form of foils. The effects of brazing temperature and V content in the filler alloy on microstructure and bonding strength of the joint were studied. The results reveal that a VN reaction layer with a thickness about 4 μm was formed at the interface between Si3N4 substrate and filler alloy. With increasing brazing temperature or V content the thickness of VN reaction layer increased. A maximum joint bending strength of 242 MPa was achieved when the joint was brazed at the temperature of 1423 K for 30 min using Au58.7Ni36.5V4.8 filler alloy. The bonding mechanism was discussed with reference to the discovered phases and brazing parameters.  相似文献   

18.
Si3N4/Si3N4陶瓷连接的研究进展   总被引:2,自引:0,他引:2  
本文综述了Si3N4/Si3N4陶瓷连接的研究现状,论述不同连接工艺对接头强度的影响。  相似文献   

19.
Porous Si3N4 (P–Si3N4) ceramic was successfully joined to Invar alloy using a Cu–Ti active brazing alloy for the first time. The interfacial reactions between the Cu–Ti filler and two dissimilar substrates were studied. The influence of brazing process on the microstructure evolution of the joint was revealed, along with the formation of an infiltration layer that permitted the bonding of P–Si3N4 substrate. Ti reacted with Si3N4 to form TiN and Ti5Si3 compounds, resulting in the decomposition of Si3N4. In addition, the reaction and diffusion dual-layer formed at the Cu–Ti/Invar interface, which was attributed to the interaction of alloy elements between the braze filler and the Invar alloy. Fe–Ti and Ni–Ti intermetallics together with Cu solid solution (s,s) constituted the microstructure of the brazing seam. In addition, the optimal shear strength of the brazed joint was 20 MPa and the fracture propagation occurred in the P–Si3N4 ceramic substrate adjacent to the infiltration layer during the shearing tests.  相似文献   

20.
Si3N4/Si3N4陶瓷连接的研究进展   总被引:2,自引:0,他引:2  
袁颖  黄庆 《陶瓷学报》1999,20(4):235-239
连接技术是Si3N4陶瓷实用过程中必须解决的难题之一。本文综述了Si3N4/Si3N4陶瓷连接的研究现状以及不同连接工艺对连接强度的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号