首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the recent past,the potential benefits of wraparound geosynthetic reinforcement technique for constructing the reinforced soil foundations have been reported.This paper presents the experimental study on the behaviour of model strip footing resting on sandy soil bed reinforced with geosynthetic in wraparound and planar forms under monotonic and repeated loadings.The geosynthetic layers were laid according to the reinforcement ratio to minimise the scale effect.It is found that for the same amount of reinforcement material,the wraparound reinforced model resulted in less settlement in comparison to planar reinforced models.The efficiency of wraparound reinforced model increased with the increase in load amplitude and the rate of total cumulative settlement substantially decreased with the increase in number of load cycles.The wraparound reinforced model has shown about 45% lower average total settlement in comparison to unreinforced model,while the double-layer reinforced model has about 41%lower average total settlement at the cost of approximately twice the material and 1.5 times the occupied land width ratio.Moreover,wraparound models have shown much greater stability in comparison to their counterpart models when subjected to incremental repeated loading.  相似文献   

2.
This paper presents the results from a laboratory modeling tests and numerical studies carried out on circular and square footings assuming the same plan area that rests on geosynthetic reinforced sand bed. The effects of the depth of the first and second layers of reinforcement, number of reinforcement layers on bearing capacity of the footings in central and eccentral loadings are investigated. The results indicated that in unreinforced condition, the ultimate bearing capacity is almost equal for both of the footings; but with reinforcing and increasing the number of reinforcement layers the ultimate bearing capacity of circular footing increased in a higher rate compared to square footing in both central and eccentrial loadings. The beneficial effect of a geosynthetic inclusion is largely dependent on the shape of footings. Also, by increasing the number of reinforcement layers, the tilt of circular footing decreased more than square footing. The SR (settlement reduction) of the reinforced condition shows that settlement at ultimate bearing capacity is heavily dependent on load eccentricity and is not significantly different from that for the unreinforced one. Also, close match between the experimental and numerical load-settlement curves and trend lines shown that the modeling approach utilized in this study can be reasonably adapted for reinforced soil applications.  相似文献   

3.
The formula for calculating the ultimate bearing capacity of horizontal-vertical reinforced soil is investigated based on the failure mode and the mechanism of sand beds reinforced with horizontal-vertical reinforcement. Two components of soils and reinforcement are calculated separately. The ultimate bearing capacity of a shallow, concentrically loaded strip footing on homogeneous soil is commonly determined using the Terzaghi superposition method. The contribution of horizontal-vertical reinforcement is calculated based on the bearing resistance of the soil against the transverse members. A vertical inclusion is treated as a retaining wall, the confinement being calculated using Rankine's earth pressure theory. An analytical solution is presented including the traditional factors of soil, unit soil weight, footing width, number of horizontal-vertical reinforcement layers, and reinforcement geometry. The results were validated against experimental results and the mean error of the theoretical model was about 10%, with a maximum error of about 20%.  相似文献   

4.
Geosynthetic reinforced soil (GRS) structures have gained popularity in replacing concrete rigid piles as abutments to support medium or small-spanned bridge superstructures in recent years. This study conducted 13 model tests to investigate the ultimate bearing capacity of the GRS mass when sand was used as backfill soil. The GRS mass was constructed and loaded to failure under a plane strain condition. Test results were compared with two analytical solutions available in literature. This study also proposed an analytical model for predicting the ultimate bearing capacity of the GRS mass based on the Mohr-Coulomb failure criterion. The failure surface of the GRS mass was described by the Rankine failure surface. The effects of compaction and reinforcement tension were equivalent to increased confining pressures to account for the reinforcing effects of the geosynthetic reinforcement. The proposed model was verified by the results of the model tests conducted in this study and reported in literature. Results indicated that the proposed model was more capable of predicting the ultimate bearing capacity of the GRS mass than the other two analytical solutions available in literature. The proposed model can be used to predict the ultimate bearing capacity of GRS structures when sand was used as backfill material. In addition, a parametric study was conducted to investigate the effects of friction angle of backfill soil, reinforcement spacing, reinforcement strength, and reinforcement stiffness on the ultimate bearing capacity of the GRS mass calculated with and without compaction effects. Results showed that the ultimate bearing capacity of the GRS mass was significantly affected by the friction angle of backfill soil, reinforcement spacing and strength. Compaction effects resulted in an increase in the ultimate bearing capacity of the GRS mass.  相似文献   

5.
This research was performed to investigate the behavior of geosynthetic-reinforced sandy soil foundations and to study the effect of different parameters contributing to their performance using laboratory model tests. The parameters investigated in this study included top layer spacing, number of reinforcement layers, vertical spacing between layers, tensile modulus and type of geosynthetic reinforcement, embedment depth, and shape of footing. The effect of geosynthetic reinforcement on the vertical stress distribution in the sand and the strain distribution along the reinforcement were also investigated. The test results demonstrated the potential benefit of using geosynthetic-reinforced sand foundations. The test results also showed that the reinforcement configuration/layout has a very significant effect on the behavior of reinforced sand foundation. With two or more layers of reinforcement, the settlement can be reduced by 20% at all footing pressure levels. Sand reinforced by the composite of geogrid and geotextile performed better than those reinforced by geogrid or geotextile alone. The inclusion of reinforcement can redistribute the applied footing load to a more uniform pattern, hence reducing the stress concentration, which will result reduced settlement. Finally, the results of model tests were compared with the analytical solution developed by the authors in previous studies; and the analytical solution gave a good predication of the experimental results of footing on geosynthetic reinforced sand.  相似文献   

6.
Thin granular fill layers are routinely used to aid the construction of shallow footings seated over undrained soft clay foundations and to increase their load capacity. The influence of time- and strain-dependent reduction in reinforcement stiffness on the bearing capacity and load-settlement response of a footing seated on a thin reinforced granular fill layer over undrained soft clay foundations is examined in this paper using finite-difference method (FDM) numerical models. The time- and strain-dependent stiffness of the reinforcement described by a two-component hyperbolic isochronous tensile load-strain model is shown to influence the bearing capacity and load-settlement response of the reinforced granular base scenario. The additional benefit of a reinforced granular layer diminishes as the time-dependent stiffness of the geosynthetic reinforcement increases. An analytical solution for the ultimate bearing capacity of strip footings seated on thin unreinforced and reinforced granular layers over undrained clay is proposed in this study. The main practical outcome from this study are tables of bearing capacity factors to be used with the analytical solution. The bearing capacity factors were back-calculated from the numerical analyses and account for the influence of rate-dependent properties of geogrid reinforcement materials and clay foundations with soft to very soft undrained shear strength.  相似文献   

7.
This paper presents a numerical study on the load-bearing performance of reinforced slopes under footing load using a finite element limit analysis (FELA) method where a non-associated flow rule is assumed in the analysis. The method was validated against results from full-scale model tests and a limit equilibrium (LE) analytical method. A series of parametric analyses was subsequently carried out to examine the influences that the soil dilation angle, footing location, and reinforcement design (i.e. length, tensile strength, and vertical spacing) could have on the load-bearing performance of reinforced slopes. Results indicate that dilation angle has a significant influence on the predicted magnitudes of bearing capacity, slope deformation, and mobilized reinforcement load. The predicted values of bearing capacity using the FELA are smaller than those from the Meyerhof's analytical method for unreinforced semi-infinite foundation, especially for larger friction angle values. Additionally, the ultimate bearing capacity of the slope and its corresponding horizontal deformation increase with the reinforcement tensile strength. Finally, the slip planes under the applied footing load are found to be y-shaped and primarily occur in the upper half of the slope.  相似文献   

8.
Bearing capacity of square footings on geosynthetic reinforced sand   总被引:2,自引:0,他引:2  
The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systematic model studies. A steel tank of size 900 × 900 × 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.  相似文献   

9.
This paper presents an experimental study on reduced-scale model tests of geosynthetic reinforced soil (GRS) bridge abutments with modular block facing, full-height panel facing, and geosynthetic wrapped facing to investigate the influence of facing conditions on the load bearing behavior. The GRS abutment models were constructed using sand backfill and geogrid reinforcement. Test results indicate that footing settlements and facing displacements under the same applied vertical stress generally increase from full-height panel facing abutment, to modular block facing abutment, to geosynthetic wrapped facing abutment. Measured incremental vertical and lateral soil stresses for the two GRS abutments with flexible facing are generally similar, while the GRS abutment with rigid facing has larger stresses. For the GRS abutments with flexible facing, maximum reinforcement tensile strain in each layer typically occurs under the footing for the upper reinforcement layers and near the facing connections for the lower layers. For the full-height panel facing abutment, maximum reinforcement tensile strains generally occur near the facing connections.  相似文献   

10.
底面为曲面基础地基极限承载力上限解   总被引:1,自引:0,他引:1  
为了解决曲面基础作用于土体的极限承载力问题,改进了 Prandtl 机构和 Hill 机构,利用极限分析理论,得到了底面为曲面基础地基极限承载力的上限解;通过两者的比较,以及与底面为平面基础地基极限承载力的比较,所得的上限解大于处于地基表面的平面基础地基极限承载力的上限解,小于埋深为基础宽度一半的平面基础地基极限承载力的上限解,研究结果可供地基承载力设计及计算参考。  相似文献   

11.
This paper aims at developing analytical solutions for estimating the ultimate bearing capacity of geogrid reinforced soil foundations (RSF) for both sand and silty clay soils. Failure mechanisms for reinforced soil foundations are proposed based on the literature review and the results of experimental study on model footing tests conducted by the authors. New bearing capacity formulas that incorporate the contribution of reinforcements to the increase in bearing capacity are then developed for both reinforced sand and silty clay soil foundations based on the proposed failure mechanisms. The predicted bearing capacity values are compared with the results of laboratory model tests on reinforced sand and silty clay soil. The proposed analytical solutions were also verified by the results of large-scale model tests conducted by the authors for reinforced silty clay and the data reported in the literature. The predicted bearing capacity values from analytical solutions are in good agreement with the test results.  相似文献   

12.
Many analytical and numerical analysis and design methods for geosynthetic-reinforced soil structures require a single-value (constant) estimate of reinforcement stiffness. However, geosynthetic reinforcement products are rate-dependent polymeric materials meaning that they exhibit time and strain-dependent behaviour under load. Hence, the appropriate selection of a constant (elastic) stiffness value requires careful consideration. A simple hyperbolic stiffness model is shown to be a useful approximation to the constant-load isochronous creep-strain behaviour of these materials at low load levels applicable to operational (serviceability) conditions of geosynthetic-reinforced soil structures. A large database of 606 creep tests on 89 different geosynthetic reinforcement products falling within seven different product categories was collected. From these data, isochronous stiffness values were determined for different combinations of duration of loading and strain level. Data from products falling within the same category were collected together to provide approximations linking the isochronous load-strain (creep) stiffness to the ultimate tensile strength of the material. These approximations are useful for analytical and numerical modelling particularly when parametric studies are undertaken to identify the sensitivity of model outcomes to reinforcement stiffness. Finally, three different geosynthetic-reinforced soil application examples are provided to demonstrate the important role of tensile stiffness on analysis and design outcomes.  相似文献   

13.
In the past, the beneficial effects of prestressing the geosynthetic in reinforced soil foundations have been studied mathematically. It is timely to experimentally investigate the degree of improvement generated by prestressing the geosynthetic layer for several embedment depths of a footing resting on a reinforced sand bed. Therefore, laboratory physical model tests and finite element analyses were conducted to study the behaviour of prestressed geotextile-reinforced sand bed supporting a loaded circular footing. The addition of prestress to the geotextile reinforcement results in significant improvement to the settlement response and the load-bearing capacity of the foundation. For a surface footing, the load-carrying capacity at 5 mm settlement for the prestressed case (with prestress equal to 2% of the allowable tensile strength of the geotextile) is approximately double that of the geotextile-reinforced sand without prestress. The beneficial effects of the prestressed geotextile configuration were evident for greater footing depths, in comparison with unreinforced and reinforced (without prestress) counterparts. Experimental and numerical results were also used to validate a few empirical relationships, which are commonly used for solving soil-structure interaction problems. The results obtained from finite element analysis using the program, PLAXIS are generally found to be in reasonabaly good agreement with experimental results.  相似文献   

14.
土工格栅加筋边坡坡顶条基极限荷载的预测   总被引:5,自引:0,他引:5  
通过土工合成材料加固的边坡,承载能力显著提高,因而获得广泛应用。为了合理的评价加筋边坡的坡顶条形基础的极限荷载,制作了足尺寸模型并进行了试验,采用延性较好但强度较低的聚丙烯(PP)土工格栅对边坡进行了加固,在坡顶通过条形基础(钢梁)施加荷载直至边坡破坏,获得了极限荷载以及边坡的变形和破坏规律,通过细致的测试手段,详细地捕捉到模型的力学响应。在此基础上,通过校验的FLAC数值模型,对土工格栅加筋边坡的承载能力进行了预测,得到了满意的结果。  相似文献   

15.
The problem related to bearing capacity of footing either on pure soil or on pure rock mass has been investigated over the years. Currently, no study deals with the bearing capacity of strip footing on a cohesive soil layer overlying rock mass. Therefore, by implementing the lower bound finite element limit analysis in conjunction with the second-order cone programming and the power cone programming, the ultimate bearing capacity of a strip footing located on a cohesive soil overlying rock mass is determined in this study. By considering the different values of interface adhesion factor (αcr) between the cohesive soil and rock mass, the ultimate bearing capacity of strip footing is expressed in terms of influence factor (If) for different values of cohesive soil layer cover ratio (Tcs/B). The failure of cohesive soil is modeled by using Mohr−Coulomb yield criterion, whereas Generalized Hoek−Brown yield criterion is utilized to model the rock mass at failure. The variations ofIf with different magnitudes of αcr are studied by considering the influence of the rock mass strength parameters of beneath rock mass layer. To examine stress distribution at different depths, failure patterns are also plotted.  相似文献   

16.
To study the settlement and dynamic response characteristics of shallow square footings on geogrid-reinforced sand under cyclic loading, 7 sets of large scale laboratory tests are performed on a 0.5?m wide square footing resting on unreinforced and geogrid reinforced sand contained in a 3?m?×?1.6?m?×?2?m (length?×?width?×?height) steel tank. Different reinforcing schemes are considered in the tests: one layer of reinforcement at the depth of 0.3B, 0.6B and 0.9B, where B is the width of the footing; two and three layers of reinforcement at the depth and spacing both at 0.3B. In one of the two double layered reinforcing systems, the reinforcements are wrapped around at the ends. The footings are loaded to 160?kPa under static loading before applying cyclic loading. The cyclic loadings are applied at 40?kPa amplitude increments. Each loading stage lasts for 10?min at the frequency of 2?Hz, or until failure, whichever occurs first. The settlement of the footing, strain in the reinforcement and acceleration rate in the soil have been monitored during the tests. The results showed that the ultimate bearing capacity of the footings was affected by the number and layout of the reinforcements, and the increment of bearing capacity does not always increase with the number of reinforcement layers. The layout of the reinforcement layers affected the failure mechanisms of the footings. Including more layers of reinforcement could greatly reduce the dynamic response of the foundations under cyclic loading. In terms of bearing capacity improvement, including one layer of reinforcement at the depth of 0.6B was the optimum based on the test results. It is found that fracture of geogrid could occur under cyclic loading if the reinforcement is too shallow, i.e. for the cases with the first layer of reinforcement at 0.3B depth.  相似文献   

17.
加筋地基承载力特性及破坏模式的试验研究   总被引:1,自引:0,他引:1  
利用自制的模型试验设备,做了一系列加筋地基的模型试验,应用数字照相变形量测技术,结合地基土压力和基础的沉降的量测来研究加筋地基的加筋机理和变形破坏模式。基础荷载作用下的地基变形场用连续的数码相片记录,然后用数字照相变形量测技术分析得到地基的增量变形场和地基的破坏面。试验结果表明,无加筋地基的破坏模式和经典的地基破坏模式吻合较好,加筋地基的破坏模式会因为加筋体的存在而发生一定程度的改变。文中模型试验所揭示的加筋地基的变形破坏机理可作为加筋地基的极限分析的基础。  相似文献   

18.
A new device was developed to comprehensively assess the interaction between soil and reinforcement as well as the interaction between neighboring reinforcement layers in a reinforced soil mass, under both working and ultimate interface shear stress conditions. An understanding of these two interactions is required to assess the mechanical behavior of a geosynthetic-reinforced soil mass considering varying vertical reinforcement spacings. Specifically, the new device allows direct visualization of the kinematic response of soil particles adjacent to the geosynthetic reinforcement layers, which facilitates evaluation of the soil displacement field via digital image analysis. Evaluation of the soil displacement field allows quantification of the extent of the shear influence zone around a tensioned reinforcement layer. Ultimately, the device facilitates investigating the load transfer mechanisms that occur not only at the soil-reinforcement interface, but also at distances farther from the interface, thereby providing additional insight into the effect of vertical reinforcement spacing on a reinforced soil mass. Finally, the device allows monitoring of dilatancy within the reinforced soil mass upon shear stress generation at the interface between soil and reinforcement. Overall, the device was found to provide the measurements needed to adequately predict the strains developing both in reinforcement layers tensioned by direct application of external loads as well as in reinforcement layers tensioned by the shear transfer induced by adjacent geosynthetic reinforcements. Ultimately, the proposed experimentation technique allows generation of data required to evaluate the load transfer mechanisms amongst soil and reinforcement layers in reinforced soil structures. The strain magnitude in the neighboring reinforcements was found to exceed a magnitude of 10% of the strain magnitude obtained in the active reinforcement. The zone of shear stress transfer from the soil-reinforcement interface was found to exceed 0.2 m on each side of the active reinforcement.  相似文献   

19.
《Soils and Foundations》2014,54(4):820-832
The ultimate bearing capacity of a circular footing, placed over a soil mass which is reinforced with horizontal layers of circular reinforcement sheets, has been determined by using the upper bound theorem of the limit analysis in conjunction with finite elements and linear optimization. For performing the analysis, three different soil media have been separately considered, namely, (i) fully granular, (ii) cohesive frictional, and (iii) fully cohesive with an additional provision to account for an increase of cohesion with depth. The reinforcement sheets are assumed to be structurally strong to resist axial tension but without having any resistance to bending; such an approximation usually holds good for geogrid sheets. The shear failure between the reinforcement sheet and adjoining soil mass has been considered. The increase in the magnitudes of the bearing capacity factors (Nc and Nγ) with an inclusion of the reinforcement has been computed in terms of the efficiency factors ηc and ηγ. The results have been obtained (i) for different values of ϕ in case of fully granular (c=0) and cϕ soils, and (ii) for different rates (m) at which the cohesion increases with depth for a purely cohesive soil =0). The critical positions and corresponding optimum diameter of the reinforcement sheets, for achieving the maximum bearing capacity, have also been established. The increase in the bearing capacity with an employment of the reinforcement increases continuously with an increase in ϕ. The improvement in the bearing capacity becomes quite extensive for two layers of the reinforcements as compared to the single layer of the reinforcement. The results obtained from the study are found to compare well with the available theoretical and experimental data reported in literature.  相似文献   

20.
This study investigates the interaction between soil and geogrids by using both direct shear and pull-out tests and applied the results to a case study. A polymer geogrid and bamboo grids were used with clayey sand and weathered clay as backfill since these materials are readily available in Thailand. The results indicated that the interaction between soil and reinforcement consists of: (a) the adhesion between soil and reinforcement on the solid surface area of the geogrid; and (b) the bearing capacity of soil in front of all transverse members of the geogrids which behaved as a strip footing embedded in the soil. The proposed design procedure for pull-out resistance agreed fairly well with the laboratory pull-out test results. In addition, it was observed that bamboo grids have higher pull-out resistance per unit area than the polymer geogrids. Moreover, the cohesive fill proved to be quite effective when used with geogrid reinforcement. Finally, the proposed design procedure and test results were applied to a case study on an irrigation canal bank repaired by the Public Works Department of Thailand using cohesive backfill and Tensar SS2 geogrids resulting in much improved slope stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号