首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We carried out a comparative study on the electrical and magnetodielectric properties of polycrystalline BiFeO3, Bi0.9Ca0.1FeO2.95, Bi0.9Ba0.05Ca0.05FeO2.95, and Bi0.9Ba0.1FeO2.95 ceramics. The two dielectric anomalies, near 25 K and 281 K, are observed for BiFeO3. Interestingly, the anomaly near 25 K shifts towards a higher temperature above 60 K with Ca and/or Ba doping, attributed to the doping induced chemical pressure. In addition, the room temperature switchable magnetodielectric effect is witnessed for the doped BiFeO3 compounds, due to the quadratic magnetoelectric coupling. This indicates the improved magnetoelectric coupling in BiFeO3 with the Ca and Ba doping. This is essentially due to the enhanced magnetic ordering and reduced leakage current in BiFeO3 after the doping.  相似文献   

2.
《Ceramics International》2015,41(8):9285-9295
Rare earth Sm substituted Bi1−xSmxFeO3 with x=0, 0.025, 0.05, 0.075 and 0.10 polycrystalline ceramics were synthesized by a rapid liquid phase sintering method. The effect of varying composition of Sm substitution on the structural, dielectric, vibrational, optical and magnetic properties of doped BiFeO3 (BFO) ceramics have been investigated. X-ray diffraction patterns of the synthesized rare earth substituted multiferroic ceramics showed the pure phase formation with distorted rhombohedral structure with space group R3c. Good agreement between the observed and calculated diffraction patterns of Sm doped BFO ceramics in Rietveld refinement analysis of the X-ray diffraction patterns and Raman spectroscopy also confirmed the distorted rhombohedral perovskite structure with R3c symmetry. Dielectric measurements showed improved dielectric properties and magnetoelectric coupling around Néel temperature in all the doped samples. FTIR analysis establishes O–Fe–O and Fe–O stretching vibrations in BiFeO3 and Sm-doped BiFeO3. Photoluminescence (PL) spectra showed visible range emissions in modified BiFeO3 ceramics. The magnetic hysteresis measurements at room temperature and 5 K showed the increase in the magnetization with the increase in doping concentration of Sm which is due to the structural distortion and partial destruction of spin cycloid caused by Sm doping in BFO ceramics.  相似文献   

3.
《Ceramics International》2023,49(7):10255-10264
Bismuth ferrite (BiFeO3) holds great potentials in the photoelectrocatalysis due to the advantages of low cost, narrow band gap and good chemical stability. However, the photoelectrochemical performance of BiFeO3 is usually inhibited by the poor charge carrier transport. Here, we report the flame annealing synthesized Sm3+ doped BiFeO3 photocathodes for efficient hydrogen production. Greatly enhanced water reduction activity was found in doped samples. The Bi0.95Sm0.05FeO3 composition exhibited largest photocurrent density of 0.1061 mA cm?2 at 0 V vs. RHE in 0.5 M Na2SO4, which was 5.6 times higher than that of the pristine BiFeO3. Mott-Schottky analysis and electrochemical impedance spectra proved that the Bi3+substitution increased the charge carrier concentration and facilitated the charge migration. Incident photon-to-electron conversion efficiency (IPCE) value for Bi0.95Sm0.05FeO3 film (~6.39% at 325 nm) was approximately ten times higher than that of undoped sample. The high performance can be ascribed to the rational Sm3+ doping, which can improve visible light absorption ability, facilitate the charge carrier transport kinetics and hinder the recombination of photogenerated carriers. Our work provides a facile cation doping with rare earth ions to improve the photoelectrochemical performances.  相似文献   

4.
We report on the structure, dielectric, ferroelectric, and photoluminescent properties of Sm3+-doped Bi4Ti3O12 thin films which were prepared on fused silica and Pt/Ti/SiO2/Si substrates by sol-gel method. The X-ray diffraction analysis confirmed that the Bi4-xSmxTi3O12 (BSmT) thin films were well crystallized in layered perovskite structure without any secondary phase. Raman spectra indicated that the structure of BSmT thin films was significantly distorted because of the Sm3+ doping. An appropriate doping amount of Sm3+ ions leads to obvious enhancement in ferroelectric and dielectric properties of BSmT thin films due to structure distortion and reduction in defects. In addition, the BSmT thin films also show orange-red color emission at 601?nm and long florescence lifetime (> 0.6?ms). This study indicated that lead-free BSmT thin films, which are featuring good electrical and photoluminescent properties, may have potential applications in integrated optoelectronic devices.  相似文献   

5.
(100)C‐oriented Na0.5Bi0.5‐xSmxTiO3 (NBST) lead‐free ferroelectric thin films were prepared on Pt/Ti/SiO2/Si substrates by chemical solution deposition method, and their microstructural, dielectric, ferroelectric, and photoluminescent properties were studied. X‐ray diffraction and scanning electron microscopy analysis indicated that both the grain size and (100)C orientation degree of NBST thin films were decreased by doping Sm3+ ions. Raman spectra showed that structural symmetry of NBST thin films decreased at low Sm3+ doping concentration and then increased at high doping concentration of Sm3+ ions. An appropriate amount of Sm3+ dopants was confirmed to enhance dielectric and ferroelectric properties of the NBST thin films. Among all the compositions, the Na0.5Bi0.492Sm0.008TiO3 thin film exhibited the largest remnant polarization (2Pr) of 27.3 μC/cm2 and high dielectric constant of 1068, as well as a low dielectric loss of 0.04. Temperature‐ and frequency‐dependent dielectric characteristics illustrated the relaxor ferroelectric behavior of Na0.5Bi0.492Sm0.008TiO3 thin film. Meanwhile, the Na0.5Bi0.492Sm0.008TiO3 thin film also showed optimal orange‐red emission at 600 nm, which is originating from the 4G5/24H7/2 transition of Sm3+ ions.  相似文献   

6.
《Ceramics International》2017,43(17):14666-14671
Sm and Ti co-doped BiFeO3 (BFO) ceramics with Fe vacancies—Bi0.86Sm0.14FeO3, Bi0.86Sm0.14Fe0.99Ti0.01O3, and Bi0.86Sm0.14Fe0.9Ti0.05O3—were prepared by a solid-state method using a rapid liquid process. X-ray diffraction indicated that all samples exhibited a rhombohedral structure with a minor secondary phase. The structural transformation from a rhombohedral (space group: R3c) to orthorhombic structure (space group: Pnma) was observed in the sample of Bi0.86Sm0.14Fe0.9Ti0.05O3, which was also confirmed by Raman scattering spectra. Microstructural investigations with scanning electron microscopy showed a reduction in grain size with doping of BFO. The dielectric loss of Bi0.86Sm0.14Fe0.9Ti0.05O3 reaches 0.05 (at 100 Hz) owing to the introduction of Ti and Fe vacancies. Ferroelectromagnetic measurements revealed the existence of ferroelectricity with a remanent polarization of 0.24 µC/cm2 in Bi0.86Sm0.14FeO3, paraelectricity in Bi0.86Sm0.14Fe0.9Ti0.05O3, and weak ferromagnetism with a remanent magnetization of 0.2 emu/g in Bi0.86Sm0.14Fe0.99Ti0.01O3. The two composition-driven phases exist simultaneously and the different coercive field might be related to the jumps in the ferromagnetic hysteresis loops. Both the ferroelectric and magnetic properties were shown to correlate with the composition-driven structural evolution.  相似文献   

7.
《Ceramics International》2016,42(12):13395-13403
Ceramics of pure phase Yttrium (Y) doped BiFeO3 prepared by a solid-state sintering route were characterized by X-ray diffraction, Raman spectroscopy, magnetic and electrical measurements. The results and analysis show that Y substitution greatly reduces the leakage current and enhances the multiferroic properties of BiFeO3. Leakage conduction mechanism is shown to change from space-charge-limited conduction type in pure BiFeO3 to a Poole–Frenkel emission behavior in Bi0.90Y0.10FeO3. A Fowler-Nordheim tunneling mechanism in Bi0.95Y0.05FeO3 ceramic is also evidenced under high electric fields. At the same time, enhanced magnetic properties due to Y-doping are confirmed by temperature dependent magnetometry and supported by Raman spectroscopy. An unexpected and sharp switching behavior in the magnetization under low magnetic fields observed in Bi0.90Y0.10FeO3 ceramic, together with its improved ferroelectric property, may trigger such system for promising magneto-electric applications.  相似文献   

8.
《Ceramics International》2022,48(10):13970-13976
Samarium substituted BiFeO3–PbTiO3 ceramic compound of (Pb0.6 Sm0.2 Bi0.2)(Fe0.4Ti0.6)O3 has been fabricated by mixed oxide solid state reaction method. The crystallographic structure from XRD study, distribution of grains from SEM micrograph, dielectric behavior, conductivity spectrum, impedance along with electric modulus spectroscopy have been illustrated. The experimental results corroborate the impact of samarium substitution in BiFeO3–PbTiO3 entailing reduced grain size, higher dielectric response with reasonably dielectric loss and enrichment in capacitive behavior with negative temperature coefficient of resistance. The temperature dependent conductivity spectra exhibit Arrhenius behavior, whereas the frequency dependent conductivity spectra follow the Jonscher universal power law. The basic correlated barrier hopping (CBH) model governs the charge transport mechanism in the fabricated compound. The exploration reveals the enriched dielectric and electrical behavior that endorse the samarium substituted material as a potential ceramic entity for designing electronic devices such as capacitors and ferroelectric accessories.  相似文献   

9.
Samaria (Sm2O3) and samaria-doped ceria (SDC) films are electrochemically deposited on stainless steel in view of a potential use in solid oxide fuel cells. As it is possible to deposit separately pure ceria (CeO2) and pure samaria (Sm2O3) in similar conditions, SDC films were successfully obtained in one electrochemical conditions set. Thin films have been fabricated at low-temperature (30 °C) by applying a cathodic potential of −0.8 V/SCE, for 2 h. Structural and morphological properties of electrodeposited films have been studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), techniques and Raman spectroscopy. Special attention has been focused on the Raman spectroscopy study to emphasize the effect of heat treatment and samarium doping. Despite cracks, single SDC phase was obtained crystallizing in a cubic symmetry.  相似文献   

10.
Lanthanum La-substituted multiferroic Bi1−xLaxFeO3 ceramics with x = 0.0, 0.05, 0.10, 0.15, 0.20 and 0.25 have been prepared by solution combustion method. The effect of La substitution for the dispersion studies on dielectric and ferroelectric properties of Bi1−xLaxFeO3 samples have been studied by performing x-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), density, dc resistivity and dielectric measurements as well as characterizing the polarization-field hysteresis loop. The results of prepared samples are compared with those of bismuth ferrite (BiFeO3). In the measuring frequency of 10 KHz to 1 MHz, the dielectric constants and dielectric losses for samples x = 0.20, 0.25 are almost stable and exhibited lowest dielectric loss close to 0.1. The resistivity of Bi1−xLaxFeO3 samples reaches a maximum value of 109 ohm-cm, which is about three times higher than that for pure BiFeO3. The results also show that stabilization of crystal structure and nonuniformity in spin cycloid structure by La substitution enhances the resistivity, dielectric and ferroelectric properties. Furthermore, the substitution of rare earth La for Bi helps to eliminate the impurity phase in BiFeO3 ceramic.  相似文献   

11.
Pure polycrystalline Bi1−xSmxFeO3 (BSFO) (x=0–0.12) thin films were successfully prepared on FTO/glass substrates by the sol–gel method. The influence of Sm doping on the structure, dielectric, leakage current, ferroelectric and ferromagnetic properties of the BSFO films was investigated. X-ray diffraction analysis and FE-SEM images both reveal a gradual rhombohedra to pseudo-tetragonal phase transition with the increase of Sm dopant content. On one hand, a proper amount of Sm doping can decrease the leakage current densities of the BSFO thin films. On the other hand, excess Sm substitution for Bi will lead to multiphase coexistence in the film, the lattice inhomogeneity results in more defects in the film, which can increase the leakage current density. The result shows that defects in the complexes lead to electric domain back-switching in the BSFOx=0.06 thin film, resulting in a decreased dielectric constant, leakage current and remanent polarization. The BSFOx=0.09 thin film is promising in practical application because of its highest dielectric constant, remanent polarization and remanent magnetization of 203–185, 70 μC/cm2 and 1.31 emu/cm3, respectively.  相似文献   

12.
The orientation modulation of ferroelectric materials is a suitable method to optimize material performance. Textured Bi1-xSmxFeO3 thin films (near the rhombohedral-orthorhombic (R-O) phase boundary, that is, x = 0, 0.1, 0.12, 0.14, and 0.16) were fabricated using the sol-gel process by introducing a LaNiO3 (LNO) seed layer. Structural and ferroelectric characterizations were used to investigate the effect of texturing on the Sm doping-induced R-O phase transition of the BiFeO3 thin films. It was found that a phase transition occurred from the rhombohedral to the orthorhombic structure with increasing Sm content in the nontextured polycrystalline films, resulting in an R-O phase boundary at x = 0.12. In contrast, the R-O phase boundary in the textured films was more diffuse, indicating a two-phase coexistence in a boarder range of Sm doping levels (x = 0.12-0.16). This discrepancy was attributed to the complexity of the stress status in thin films. The dielectric and electrical properties of the nontextured and textured samples were investigated. The current study shows that the phase boundary in ferroelectric thin films can be altered by diverse means, thus providing insights into potential applications.  相似文献   

13.
《Ceramics International》2023,49(3):4298-4304
Recently, the high efficient and environment–friendly electrocaloric cooling technology has become a hot topic. Unfortunately, the single process and extreme conditions have greatly limited its application. Due to the similar perovskite structure, Bi5Ti3FeO15 and BiFeO3 were selected to fabricate mesoscopic composites in this work to realize the double consecutive cooling effect. We propose that the non–collinear interfacial polarization is the origin of near room temperature electrocaloric cycling refrigeration. The electrons are trapped at the Bi5Ti3FeO15/BiFeO3 interfacial potential well, where the electrons possess discontinuous energy and jump by thermal activity. The structure, dielectric capacitance and ferroelectric polarization of the composite films were further analyzed. Finally, the performance of the mesoscale cooling device is simulated, which shows a promising avenue to high efficient double cycling refrigeration. More importantly, the results are helpful to understand the cycling principle of electrocaloric cooling.  相似文献   

14.
Effects of Ho and Ti ions individual doping and co‐doping on the structural, electrical, and ferroelectric properties of the BiFeO3 thin films are reported. Pure BiFeO3, (Bi0.9Ho0.1)FeO3, Bi(Fe0.98Ti0.02)O3+δ, and (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ thin films were prepared on Pt(111)/Ti/SiO2/Si(100) substrates by using a chemical solution deposition method. All thin films were crystallized in distorted rhombohedral structure containing no secondary or impurity phases confirmed by using an X‐ray diffraction study. Changes in microstructural features, such as grain morphology and grain size distribution, for the doped samples were analyzed by a scanning electron microscopy. From the experimental results, a low electrical leakage (1.2 × 10?5 A/cm2 at 100 kV) and improved ferroelectric properties, such as a large remnant polarization (2Pr) of 52 μC/cm2 and a low coercive field (2Ec) of 886 kV/cm, were observed for the (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ thin film. Fast current relaxation and stabilization observed in the (Bi0.9Ho0.1)(Fe0.98Ti0.02)O3+δ imply effective reduction and neutralization of charged free carriers.  相似文献   

15.
《Ceramics International》2017,43(18):16531-16538
We have studied Ho-doped BiFeO3 nanopowders (Bi1−xHoxFeO3, x = 0–0.15), prepared via sol-gel method, in order to analyse the effect of substitution-driven structural transition on dielectric and ferroelectric properties of bismuth ferrite. X-ray diffraction and Raman study demonstrated that an increased Ho concentration (x ≥ 0.1) has induced gradual phase transition from rhombohedral to orthorhombic phase. The frequency dependent permittivity of Bi1−xHoxFeO3 nanopowders was analysed within a model which incorporates Debye-like dielectric response and dc and ac conductivity contributions based on universal dielectric response. It was shown that influence of leakage current and grain boundary/interface effects on dielectric and ferroelectric properties was substantially reduced in biphasic Bi1−xHoxFeO3 (x > 0.1) samples. The electrical performance of Bi0.85Ho0.15FeO3 sample, for which orthorhombic phase prevailed, was significantly improved and Bi0.85Ho0.15FeO3 has sustained strong applied electric fields (up to 100 kV/cm) without breakdown. Under strong external fields, the polarization exhibited strong frequency dependence. The low-frequency remnant polarization and coercive field of Bi0.85Ho0.15FeO3 were significantly enhanced. It was proposed that defect dipolar polarization substantially contributed to the intrinsic polarization of Bi0.85Ho0.15FeO3 under strong electric fields at low frequencies.  相似文献   

16.
Sr2+ doped BiFeO3 (Bi1-xSrxFeO3, 0?≤x?≤?0.35) nanofibres were fabricated by a sol-gel based electrospinning method. The as-spun BiFeO3 (BFO) nanofibres consist of fine grained particles with high crystallinity. With Sr2+ doping, both the magnetic and photocatalytic properties of BFO are effectively improved. The best photocatalytic property for degradation of the methylene blue (MB) is obtained in Bi0.75Sr0.25FeO3 nanofibres due to their weakest photoluminescence (PL) intensity. Meanwhile, the photocatalytic property of Bi0.75Sr0.25FeO3 nanofibres is much higher than that of nanoparticles with the same constituent, which is attributed to the unique one-dimension fibrous structure benefiting the separation and decreased recombination of e-/h+ pairs. This work proposes an effective approach for the degradation of organic pollutes.  相似文献   

17.
Bi1?xBaxFeO3 (x = 0.00–0.25) samples were prepared by conventional solid state reaction method. X-ray diffraction revealed the rhombohedrally distorted perovskite structure for undoped BiFeO3 with a phase transition from rhombohedral to pseudo cubic on Ba substitution. The leakage current density of 10% Ba substituted sample is found to be four orders of magnitude less than that of the pure BiFeO3. Grain boundary limited conduction and space charge limited conduction mechanisms are involved in low and high electric field regions respectively for all the samples except 10% Ba doped BFeO3 which obeys grain boundary limited conduction mechanism in whole of the electric field range. Dielectric measurements showed that the dielectric constant and dielectric loss attained their minimum values at 10% Ba substitution. Thus 10% Ba is found to be optimum concentration to have better multiferroic properties. Undoped BiFeO3 and 5% Ba doped samples have very large values of dielectric constants and leakage current densities which can be attributed to a large number of oxygen vacancies in these samples, indicating an extrinsic response of these compositions.  相似文献   

18.
Pure BiFeO3 (BFO) and Bi1−xTbxFeO3 (BTFO) thin films were successfully prepared on FTO (fluorine doped tin oxide) substrates by the sol–gel spin-coating method. The effects of Tb-doping on the structural transition, leakage current, and dielectric and multiferroic properties of the BTFO thin films have been investigated systematically. XRD, Rietveld refinement and Raman spectroscopy results clearly reveal that a structural transition occurs from the rhombohedral (R3c:H) to the biphasic structure (R3c:H+R-3m:R) with Tb-doping. The leakage current density of BTFOx=0.10 thin film is two orders lower than that of the pure BFO, i.e. 5.1×10−7 A/cm2 at 100 kV/cm. Furthermore, the electrical conduction mechanism of the BTFO thin films is dominated by space-charge-limited conduction. The two-phase coexistence of BTFOx=0.10 gives rise to the superior ferroelectric (2Pr=135.1 μC/cm2) and the enhanced ferromagnetic properties (Ms=6.3 emu/cm3). The optimal performance of the BTFO thin films is mainly attributed to the biphasic structure and the distorted deformation of FeO6 octahedra.  相似文献   

19.
《Ceramics International》2017,43(12):8778-8783
In this article, the effect of Mn doping on the permittivity and dielectric loss in 0.67BiFeO3-0.33BaTiO3 (BF-BT) based film bulk acoustic resonator test structures has been investigated. BF-BT thin films were deposited on the fused silica substrates with Pt/TiO2/Ti as bottom electrode. During the study of the BF-BT based parallel-plate structures, it has been revealed that BF-BT is in the ferroelectric state at room temperature. Higher permittivity (ԑ) is observed at a growth temperature of 600 °C and lower dielectric loss is achieved at 0.3 wt% Mn doping contents. These results show that the proposed BF-BT based FBAR test structure has a great potential for applications in tunable thin Film Bulk Acoustic Resonator (FBAR) devices. Comparison of the measured and simulation results has been made by utilizing the Mason equivalent circuit.  相似文献   

20.
Bi2Fe4O9 was prepared by solid-state reaction and the electrical properties measured by impedance spectroscopy. After annealing in O2 at 900 °C, Bi2Fe4O9 is an electrically-homogeneous insulator. Its high frequency permittivity is constant (∼14.1) over the temperature range 300–400 °C and shows no evidence of incipient ferroelectricity at lower temperatures. On annealing in N2 at 900 °C, the pellets gradually decompose.Bi25FeO39 was prepared by both solid-state reaction and mechanosynthesis. It showed a modest amount of mixed conduction of both oxide ions and holes. Impedance analysis showed a complex response that best fitted an equivalent circuit consisting of a parallel combination of long-range conduction and short range dielectric relaxation elements.The electrical conductivity of both Bi2Fe4O9 and Bi25FeO39 is less than that of BiFeO3 prepared by solid-state reaction, which indicates that any leakage conductivity of BiFeO3 is not due to the possible presence of small amounts of these secondary phases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号