首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aluminum oxynitride (AlON) can be effectively finished by ultra-precision grinding. In this work, the ultra-precision grinding experiment was conducted on AlON to investigate surface characteristics and material removal mechanism. The ground surface has an unusual non-uniform morphology resulted from the different material removal modes. Grazing incidence X-ray diffraction (GIXRD), nanoindentation and Electron Back-Scattered Diffraction (EBSD) were carried out to study the micro-properties of AlON. The results revealed that the micro mechanical properties vary with the grain orientation on the surface. The morphologies of ground surface are consistent in the twinned grains and change with the grain orientation. By comparing the relationship of machining size and grain size, the material removal modes of individual grains should be taken into consideration during ultra-precision grinding. Based on this, a simple theoretical model was proposed to explain the material removal mechanism of AlON under ultra-precision grinding.  相似文献   

2.
《Ceramics International》2022,48(18):26042-26054
Cf/SiC composites are used as advanced thermal protection and friction materials. However, machining these materials is difficult because of their hard, brittle, anisotropic, and heterogeneous characteristics. This study investigated the removal behavior and surface integrity of Cf/SiC composites during abrasive belt grinding using rubber contact wheels of various hardness. Additionally, detailed analysis was performed on their thermal-mechanical coupling characteristics, surface integrity (that is, surface roughness, surface micro morphology, and subsurface damages), and the grinding chips produced. Results revealed that with decreasing hardness of the contact wheel, the surface roughness in all directions, grinding force, and temperature decreased significantly. Moreover, the surface removal morphology of the Cf/SiC composites changed from macro-fracture to micro-fracture, and the subsurface morphology changed from SiC matrix cracking and carbon fibers pull-out to matrix plastic flow and fiber micro-fracture, respectively. Furthermore, strip chips with plastically squeezed and cut surfaces were visible in the grinding chips obtained under the 40-HA contact wheel. Therefore, the ductile removal behavior of the Cf/SiC composites was enhanced, and the surface quality in abrasive belt grinding with low-hardness contact wheels was markedly improved.  相似文献   

3.
Simple Technique for Observing Subsurface Damage in Machining of Ceramics   总被引:3,自引:0,他引:3  
A simple technique is proposed for directly observing subsurface damage in the machining of ceramics. The technique requires two polished specimens and an optical microscope with Nomarski illumination for examination. The subsurface damage created by the grinding of an alumina ceramic is investigated using this technique. The mode of damage is identified as intragrain twinning/slip, and intergranular and transgranular cracking. Chipping along the twinned planes and along the transgranular crack planes, and dislodgement of the intergranularly debonded grains are suggested to be the mechanisms of material removal in the machining of this alumina ceramic.  相似文献   

4.
Crack induced surface/subsurface damage in SiC ceramic grinding limits the industrial application. A single-grain scratching simulation based on the smoothed particle hydrodynamics (SPH) has been used to analyze the SiC grinding mechanism, including the material removal process, scratching speed effect on crack propagation, ground surface roughness, and scratching force. The simulation results showed that the material removal process went through the pure ductile mode, brittle assisted ductile mode, and brittle mode with the increase of the depth of cut. The critical depth of cut for ductile-brittle transition was about 0.35?µm based on the change of ground surface crack condition, surface roughness, and maximum scratching force. Increasing the scratching speed promoted the transformation of deep and narrow longitudinal crack in the subsurface into the shallow and wide transverse crack on the surface, which improved the surface quality. The SPH simulation results were indirectly validated by the cylindrical grinding experiments in terms of the critical single grain depth of cut for ductile-brittle transition, and the trend of ground surface roughness and grinding forces.  相似文献   

5.
Material removal and surface damage of Ti3SiC2 ceramic during electrical discharge machining (EDM) were investigated. Melting and decomposition were found to be the main material removal mechanisms during the machining process. Material removal rate was enhanced acceleratively with increasing discharge current, ie, working voltage, ui, but increased deceleratively with pulse duration, te. Microcracks in the surface and loose grains in the subsurface resulted from thermal shock were confirmed, and the surface damage in Ti3SiC2 ceramic led to a degradation of both strength and reliability.  相似文献   

6.
Laser-assisted grinding (LAG) is a promising method for cost-effective machining of hard and brittle materials. Knowledge of material removal mechanism and attainable surface integrity are crucial to the development of this new technique. This paper focusing on the application of LAG to Reaction Bonded (RB)-SiC ceramics investigate the material removal mechanism, grinding force ratio and specific grinding energy as well as workpiece surface temperature and surface integrity, together with those of the conventional grinding for comparison. Response surface method and genetic algorithm were used to optimize the machining parameters, achieving minimum surface roughness and subsurface damage, maximum material removal rate. The experiments results revealed that the structural changes and hardness decrease enhanced the probability of plastic removal in LAG, therefore obtained better surface integrity. The error of 3-D finite element simulation model that developed to predict the temperature gradient produced by the laser radiation is found to be within 2.7%–15.8%.  相似文献   

7.
Due to its superior mechanical, optical and chemical properties, sapphire (α-Al2O3) is widely used in engineering, optics, medicine, and other scientific research fields. The atomic structure of sapphire gives rise to anisotropy in its mechanical properties, which affects the machinability of sapphire materials on different crystal planes. Different cutting directions will affect the wafer economy and surface quality achieved during wire sawing due to this anisotropy. In this study, the machinability of A-plane sapphire was investigated for diamond wire sawing in three different directions, following the C-plane, R-plane and M-plane. The results show that the direction following the M-plane could be the best direction for diamond wire sawing because this direction results in the minimal sawing forces, the lowest specific energy and the smallest volume of material that will need to be removed during subsequent processing. These characteristics correspond to the direction with the highest fracture strength since the material is removed by brittle machining. The force ratio for sawing in the direction of the R-plane is the smallest because this direction is associated with the minimum hardness and the lowest critical load for the transition from plastic to brittle removal of the workpiece material. The 3D height parameters show no obvious pattern among the three sawing directions. The mechanism of material removal is mainly brittle removal, with some plastic removal, and is obviously affected by the crystal orientation.  相似文献   

8.
《Ceramics International》2017,43(18):16539-16547
In order to explore the grinding characteristics of cBN-WC-10Co composites, the grinding experiment with a resin bond diamond grinding wheel was carried out. The grinding forces, surface roughness, surface morphology and residual stress were investigated. It was found that the material removal mechanism of cBN-WC-10Co was the combination of the brittle fracture of cBN particles, ductile removal of Co phase, plastic deformation, grain dislodgement and grain crush of WC grains. The brittle removal model resulted in a lower specific grinding energy. The main contributor to the surface roughness was cBN particles. Some cBN particles over the surface of cBN-WC-10Co composites were fractured or pulled out and then formed cavities with different depths, this led to a rougher surface. The surface roughness was increased but the specific grinding energy decreased with an increase of the maximum undeformed chip thickness. A high-level residual compressive stress was induced at WC phase and it was increased with an increase of the depth of cut. The depth of cut has more significant influence on the grinding forces than the table speed or the wheel speed.  相似文献   

9.
Taper grinding experiments were conducted in this paper to investigate the continuous and complete ductile-brittle transition process of two kinds of amorphous glass: high purity fused silica (HPFS) which is silica rich glass and soda-lime silica glass (SLSG) which is low silica glass. The grinding force, ground surface morphology, surface roughness, and subsurface damage depth induced during different stages of taper grinding were all analyzed. A mathematical model describing the cutting force of a grit and micro-crack length was established to clarify the ductile-brittle transition mechanisms of isotropic material. The model revealed that material removal mechanisms and grinding force were mainly determined by the crack equivalent length in front of the grit and its equivalent cutting force. The ground surface roughness and subsurface damage depth were mainly affected by the cutting force of the grit and length of cracks behind it. The ductile machinability of SLSG was better than that of HPFS due to the bonding of metallic atoms in SLSG with nonbridging oxygens, as well as their packing into free volume in SiO2 network.  相似文献   

10.
《Ceramics International》2023,49(4):5951-5963
The mechanisms of ductile–brittle transition and surface/subsurface crack damage during the grinding of plasma–sprayed alumina ceramic coatings were investigated in an experiment and simulation on single diamond abrasive grain cutting. We observed that the brittle damage modes of alumina ceramic include boundary cracks, median cracks and lateral fractures. The normal force of the abrasive grain results in the initiation of median cracks, whereas the tangential force of the abrasive grain results in the propagation of median cracks in the direction of the abrasive grain cutting. Some cracks propagate downward to form machined surface cracks, whereas others propagate to the unmachined surface of the workpiece to produce brittle removal. Owing to the alternating tensile and compressive stresses, the material in contact with the top of the abrasive grain fractures continuously, forming the main morphology of the machined surface. The geometry and cutting depth of the abrasive grain have a significant influence on the ductile–brittle transition, whereas the cutting speed of the abrasive grain have no significant influence. On one hand, the stress concentration at the pore defects result in crack propagation to the deep layer; on the other hand, it reduces the local strength of the surface material, produces brittle fracturing, and interrupts crack propagation. The pores exposed on the machined surface and the broken morphology around them are important factors for reducing the surface roughness. Experimental observations show that the machined surface morphology of the alumina ceramic coating is composed of brittle fracturing, ductile cutting and plowing, cracks, original pores, and unmelted particles.  相似文献   

11.
The single nanoscratch, repeated nanoscratch and double nanoscratch tests of Lu2O3 transparent ceramics are carried out on a nanoindenter. Theoretical models of the penetration depth in single scratch, repeated nanoscratch and double nanoscratch tests are established by taking the elastic recovery into account. The surface morphology, friction characteristics of repeated nanoscratch and elastic recovery of double nanoscratch are researched. Ductile surface with hardly cracks and burrs, and obvious pile-up at the leading edge and both sides of the scratch path are obtained. TEM results indicate that the ductile deformation mechanism of Lu2O3 transparent ceramics is a combination of poly-crystalline nano-crystallites in the inner grain and amorphous transformation. Many defects including dislocations, stacking faults, nano twins, torsion of atomic plane, fracture of atomic plane and wrong arrangement of atomic plane are induced in nano grains generated during the ductile removal process. The dominant way of subsurface crack propagation is intergranular fracture.  相似文献   

12.
《Ceramics International》2017,43(15):11596-11609
A critical function for crack propagation for the single grit scratching of fused silica is developed based on the fracture mechanics. The effects of original crack density on the surface, strain rate and grinding coolant are considered in the function. A theoretical model for controlled material removal mode and depth of micro cracks precision grinding is presented based on the critical function for crack propagation. It can be predicted by the model that the material removal mode in the grinding of fused silica with original cracks damage will change from a ductile mode to a semi-brittle mode, a full-brittle mode and a semi-brittle mode in sequence with the increasing single grit scratching depth. It was found that the micro crack damage depth of fused silica does not increase with the single grit scratching depth after a full brittle mode grinding and it is always smaller than that after a semi brittle mode grinding even with a smaller single grit scratching depth. These interesting results are explained by the fracture mechanics. The ductile mode grinding is a recognized desirable process of fabricating fused silica while the full-brittle grinding is also a feasible process for its shallow subsurface damage, high efficiency, low grinding force and energy consumption. Therefore, the depth of micro cracks after grinding can be controlled by choosing suitable grinding parameters. Grinding experiments are conducted on fused silica. The undeformed chip thickness of randomly distributed effective grits is simulated based on 3D reconstruction of wheel topography to reveal the relationship between the grinding parameters and the single grit scratching depth. Ground surface roughness, sub-surface damage (SSD) depth and grinding force are measured and discussed. It is shown that the model predictions correlate well with the experimental trend of grinding modes.  相似文献   

13.
A germanium surface and the chips produced from a single-point diamond turning process operated in the "ductile regime" have been analyzed by transmission electron microscopy and parallel electron-energy-loss spectroscopy. Lack of fracture damage on the finished surface and continuous chip formation are indicative of a ductile removal process. Periodic thickness variations perpendicular to the machining direction also are observed on these chips and are identified as ductile shear lamellae. The chips consist of an amorphous, elemental germanium matrix containing varying amounts of microcrystalline germanium fragments. The relative orientation of machining marks and crystallographic fragment texture are used to position individual chips with respect to the initial angular cutting zone on the wafer. Chips with high fragment content correlate directly to cutting zones subject to the highest resolved tensile stress on cleavage planes. These findings are explained in the context of a high-pressure metallization (brittle-to-ductile) transformation with ductility limited by the onset of classical brittle fracture.  相似文献   

14.
In this article, the relationship between fracture surface feature and impact properties of poly(butylene terephthalate) (PBT) was investigated. The results indicated that the fracture surface morphology of notched impact specimens tested in the temperature range from 196 to 180 °C could be differentiated into brittle (T ≤ 20 °C) and ductile appearances (T > 20 °C). The fracture surface roughness was characterized by surface roughness ratio (R s) and fractal dimension (D b). The fracture mode significantly influenced the relationship between impact strength and fracture surface roughness. When PBT fractured in a brittle mode, both the measured values of R s and D b could correspond to impact strength appropriately. On the contrary, when PBT fractured in a ductile mode, their relationship became not statistically significant because the area of the plastic deformation zone instead of fracture surface roughness might be the major factor influencing impact strength.  相似文献   

15.
Microstructured surfaces on hard and brittle materials are widely used in a series of scientific and industrial applications, such as micro-electro-mechanical systems, nano-electro-mechanical systems, electronic devices, and medical products. However, the efficient precision machining of microstructured surfaces on hard and brittle materials faces great challenges. In this study, a new machining technology for high-efficiency precision fabrication of microstructured surface on hard and brittle materials was developed by a microstructured coarse-grained diamond grinding wheel. Initially, the laser microstructuring of the conditioned coarse-grained diamond grinding wheel was introduced. The influence of the laser-machined microstructure geometry on the form accuracy of the final, ground microstructured surface was theoretically analysed. Subsequently, the ductile regime grinding of the microstructured surface was examined for WC cermet and BK7 optical glass. The ground surfaces mainly under the ductile regime material removal were successfully achieved, especially in the case of WC ceramic. Finally, different linear and square microstructured surfaces with high form accuracy, sharp microstructure edge, and nanoscale surface roughness were efficiently fabricated on WC and BK7 optical glass by the method developed in the study.  相似文献   

16.
《Ceramics International》2021,47(23):33127-33139
Brittle KH2PO4 (KDP) crystal is difficult-to-machine because of its low fracture resistance whereby brittle cracks can be easily introduced in machining processes. To achieve ductile machining without any cracks, this type of materials is generally processed by some ultra-precision machining techniques at ambient temperature with nanoscale material removal, yielding low machining efficiency and high processing cost. Recently, thermal-assisted techniques have been used to successfully facilitate the machining of some difficult-to-machine materials, like superalloys, but little effort has been made to explore whether the temperature effect can contribute to the ductile machinability of brittle materials yet. Thus, the aim of this study is to figure out the specific role of temperature in the deformation behaviours of brittle KDP crystal by nano indentation/scratch methods. It is found that compared with those at ambient temperature (AT, i.e. 23 °C), the hardness and Elastic modulus of KDP crystal at elevated temperature (ET, i.e. 160 °C) decrease substantially by 21.4% and 32.5%, respectively, while the fracture toughness increases greatly by 15.5%, implying a higher ability of ductile deformation at ET. Meanwhile, the scratch length within ductile removal has been identified to be extended more than 4 times by increasing temperature from AT to ET. Both the quantity and size of brittle features (e.g., cracks and chunk removal) show a reducing trend with the increase of temperature. To uncover the underlying mechanism of this phenomenon, an updated stress field model is proposed to analyze the scratch-induced stress distribution by considering the evolution of material property at various temperature. These presented results are significant for the future design of specific thermal-assisted processing techniques for machining brittle materials efficiently.  相似文献   

17.
《Ceramics International》2019,45(10):12780-12788
In this work, a novel process of laser-induced oxidation assisted micro milling (LOMM) was proposed. TiB2-SiC ceramic with hardness of 24.6 ± 0.8 GPa was prepared by spark plasma sintering and used as the workpiece material. The cutting force, surface quality and tool wear mechanisms were investigated. Under laser irradiation and oxygen assistance, a porous oxide layer and relatively dense sub-layer were formed. The hardness of the sub-layer was found to be 12.8 ± 0.7 GPa which was far lower than that of the substrate. Both the cutting and thrust forces increased with increasing the feed per tooth and depth of cut in micro milling of the sub-layer material. The material removal mechanism was dominated by a transition from ductile to brittle mode as the feed per tooth increased from 0.3 μm/z to 1.2 μm/z. The surface roughness Ra of 46 nm was achieved when the cutting speed, feed per tooth and depth of cut were 31.4 m/min, 0.3 μm/z and 2 μm, respectively. The tool wear mechanism was characterized by the flank wear and coating spalling. As a case study, a micro slot having width of 0.5 mm and aspect ratio of 2 was fabricated by the LOMM. For comparison, the conventional micro milling was also carried out using the same cutting parameters. The surface quality fabricated by LOMM was better than that by the conventional micro milling. The machining efficiency in LOMM was improved by 104% as compared to the conventional micro milling.  相似文献   

18.
《Ceramics International》2021,47(20):28419-28428
In this research, a single-diamond grinding test was performed on sintered silicon carbide (SSiC) to explore the damage formation mechanism. A scanning electron microscope and a transmission electron microscope (TEM) were used to examine the surface and subsurface morphologies of the grinding groove, respectively. The characteristics of the ground surface morphologies reveal that the single-diamond grinding process of SSiC can be classified into purely ductile, primarily ductile, primarily brittle, and purely brittle stages. Based on the high-resolution TEM (HRTEM) images and the corresponding Fast Fourier transform images of the near-surface region, results reveal that the high density of dislocations and amorphization of SiC grains are responsible for the plastic deformation of SSiC. Most of the cracks congregate on the top grains of the ground surface due to the distinct obstruction of the grain boundary on the cracks propagation, and the cracks generated at the grain boundaries emit into the top grain interiors and go up toward the exposed surface for the distortedly deformed region with higher strain energy; Furthermore, stress concentration caused by the dislocation pileups at grain boundaries represents the crack initiation mechanisms for SSiC. Finally, based on the dislocations pile-up theory, a critical undeformed chip thickness model for boundary crack system nucleation is established, which considers the cutting-edge radius, grinding wheel speed, material properties, and grain size of ceramics.  相似文献   

19.
Interphase boundaries between SiC and h-BN grains in hot isostatically pressed Si3N4–SiC particulate composites made from both as-received powders and deoxidised powders, in which sub-micron size h-BN particles occur as a contaminant, have been characterised using transmission electron microscopy techniques. Most of the h-BN grains observed were aligned with respect to SiC grains so that (111) 3C SiC and (0001) α-SiC planes were parallel to (0001) h-BN planes. The h-BN–SiC interphase boundaries in the composites made from as-received powders were covered with thin silica-rich intergranular films, in contrast to the interphase boundaries in the composites made from deoxidised powders. These observations are discussed in the light of models for the formation of intergranular amorphous films in ceramic materials, geometric considerations for low interfacial energies and the possible bonding at h-BN–SiC interphase boundaries free of intergranular films.  相似文献   

20.
Mechanical properties of polycarbonates (PCs) and elastomer-modified polycarbonates with various molecular weights (MW) are investigated. Higher MW PCs show slightly lower density, yield stress, and modulus. The ductile–brittle transition temperature (DBTT) of the notched impact strength decreases with the increase of PC MW and with the increase of elastomer content. The elastomer-modified PC has higher impact strength than does the unmodified counterpart if the failure is in the brittle mode, but has lower impact strength if the failure is in the ductile mode. The critical strain energy release rate (Gc) measured at ?30°C decreases with the decrease of PC MW. The extrapolated zero fracture energy was found at Mn = 6800 or MFR = 135. The Gc of the elastomer-modified PC (MFR = 15, 5% elastomer) is about twice that of thee unmodified one. The presence of elastomer in the PC matrix promotes the plane–strain localized shear yielding to greater extents and thus increases the impact strength and Gc in a typically brittle fracture. Two separate modes, localized and mass shear yielding, work simultaneously in the elastomer-toughening mechanism. The plane–strain localized shear yielding dominates the toughening mechanism at lower temperatures and brittle failure, while the plane–stress mass shear yielding dominates at higher temperatures and ductile failure. For the elastomer-modified PC (10% elastomer), the estimated extension ratio of the yielding zone of the fractured surface is 2 for the ductile failure and 5 for the brittle crack. A criterion for shifting from brittle to ductile failure based on precrack critical plastic-zone volume is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号