首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 320 毫秒
1.
In Japan, a large number of old small earth dams are in critical need of repair due to leakage and poor earthquake resistance. In addition to cohesive soils, geosynthetic clay liners (GCLs) are used as impervious materials to repair such dams. This paper discusses the seismic performance of small earth dams, with reservoirs on their upstream side, repaired with a sloping core zone and a GCL on the basis of the results of full-scale shaking table tests performed at the E-Defense facility. The main focus is on the differences in mechanical behavior between the upstream and downstream sides of the dam. The results elucidate that the effective stress of the upstream embankment materials increased because of the undrained shear behavior of the compacted soils, although the deformation on the upstream side was larger than that on the downstream side. A large phase difference in the measured accelerations between the upstream slope and the downstream slope was also observed. Therefore, it is concluded that significant differences occurred in the dynamic behavior of the upstream side and the downstream side.  相似文献   

2.
A numerical model for performance-based design of the geosynthetic elements of waste containment systems has been developed. The model offers a rational alternative to the current state of practice for design of geosynthetic containment system elements in which neither the strains nor the forces in liner system elements are explicitly calculated. To explicitly assess the ability of the geosynthetic elements of a containment system to maintain their integrity under both static and seismic loads, a large strain finite difference model of waste-liner system interaction was developed. Modular features within the model allow the user to select the appropriate features required for any particular problem. A beam element with zero moment of inertia and with interface elements on both sides is employed in the model to represent a geosynthetic element in the liner system. This enables explicit calculation of the axial forces and strains within the liner system element. Non-linear constitutive models were developed to represent the stress-strain behavior of geomembrane and geosynthetic clay liner beam elements and the load-displacement behavior of the beam interfaces. The use of the various features on the model is illustrated using available experimental data, including shaking table test data on rigid and compliant blocks sliding on geomembranes. Analysis of geomembranes subject to waste settlement and subject to seismic loading demonstrate applications of the model and provide insight into the behavior of geosynthetic liner system elements subject to tensile loads.  相似文献   

3.
《Soils and Foundations》2019,59(6):1830-1844
Geosynthetic clay liners (GCLs), used to repair small earth dams, are typically installed with the GCL panel placed parallel to the upstream slope of the dam or on the surface of benches cut into the upstream side of the earth dam fill. While the former requires less earthwork, leading to a more cost-effective and rapid construction, it can potentially introduce a plane of weakness if the interface shear strength between the GCL and the cover soil is less than the shear strength of the cover soil. The inclusion of benches in the upstream slope of an earth dam can potentially be an effective strategy for reducing the significance of this preferential failure plane, resulting in an increased seismic performance during earthquakes. However, the expected increase in seismic performance has not yet been quantified in large-scale shaking table tests. In this study, a full-scale shaking table test on an earth dam with a GCL installed parallel to the upstream slope of the dam is reported and compared to previously published results from tests on an identical earth dam with the GCL placed in the benched configuration under the same seismic boundary conditions. The results indicate that, for the configuration tested, the seismic deformation of the benched installation was half of that of the earth dam with the GCL installed parallel to the slope, providing significant motivation for adopting the benched installation method.  相似文献   

4.
The seismic performance of soilbags-built retaining wall model was studied experimentally. A series of small-scale shaking table tests with the input of different amplitude sinusoidal waves and a large-scale shaking table test in a designed laminar shear box with the input of the Wenchuan earthquake wave were carried out on soilbags' retaining wall models. For comparison, the small-scale shaking table tests were also conducted on horizontally reinforced retaining wall models. The horizontal acceleration responses, the Fourier spectra, the dynamic earth pressure and the lateral displacements of soilbags' retaining wall models were investigated in shaking table tests. The results show that the seismic response of the soilbags' retaining wall is equivalent to or even slightly better than that of the horizontally reinforced retaining wall. The fundamental frequency and the Fourier spectral characteristics of the soilbags’ retaining wall are similar to those of backfill sands. The dynamic earth pressure of the wall model fluctuates almost synchronously with the input Wenchuan wave and no residual earth pressure is induced by the seismic loading. The permanent lateral displacements are small when subjected to multiple shakings, providing a proof that the retaining wall of soilbags has a good seismic performance.  相似文献   

5.
This paper presents an earthquake‐resistance study program of a long‐span cantilevered story building. The program consists of a shaking table test study and nonlinear seismic analysis using finite element modeling technique. A 1/30 scale model of the prototype structure was designed and manufactured and then tested via the shaking table facility. Dynamic responses of the prototype structure under different earthquake excitation loadings were simulated. Dynamic properties, acceleration, and deformation responses of the scale down model under different intensity levels of earthquake were studied. The dynamic behavior, cracking pattern, and the likely governing failure mechanism of the structure were analyzed and discussed as well. The seismic responses of the prototype building were deduced and analyzed in terms of the similitude law. Furthermore, elaborate finite element models were established, and nonlinear numerical analysis of the prototype structure was conducted. The errors in the seismic response of the structure caused by structural simplification of scale down modeling are found small, and the dynamic behavior of the structure was not altered in the earthquake excitations. This test study provides a benchmark to calibrate the finite element model and a tentative guide in seismic design of such long‐span cantilevered story buildings.  相似文献   

6.
采用大型振动台模型试验,输入幅值逐级增大的地震波,直到边坡破坏,得到边坡动力破坏特征:上部拉裂缝和下部剪切滑移面形成贯通的破裂面,滑体上监测点位移和加速度响应突变,表明边坡已经发生破坏,且坡顶局部块体在地震作用下发生抛射现象。采用FLAC动力差分软件通过逐渐加大输入地震波幅值,模拟模型边坡振动台试验过程,证实拉裂缝与剪切滑移面贯通是边坡动力破坏的必要条件,位移和加速度响应突变可以作为边坡动力破坏的判据。振动台试验和数值计算在边坡动力破坏三个特征上吻合较好,证明振动台模型试验结果的合理性,也证明数值分析方法的可靠性。  相似文献   

7.
明甪直天王殿松木斗拱振动台试验研究   总被引:2,自引:1,他引:1  
以甪直保圣寺天王殿斗拱为参考对象,进行无缩尺松木斗拱模型的地震台试验研究。通过对斗拱的加速度与动力放大系数变化趋势、斗拱在振动过程中位移响应变化特征、斗拱变形最大时刻和各构件变形最大时刻的滑移位移和回转位移数值对比分析,得出以下结论:地震加速度用于衡量地震烈度,并不能直接反映斗拱试件的最大变形;振动频率的变化对斗拱回转变形的变化起重要作用,振幅是决定各构件水平滑移的主要因素;各构件变形最大值与斗拱整体变形最大值具有很强相关性,其中栌斗和华拱的回转变形对斗拱的整体变形而言,处于支配地位;斗拱的华拱连下昂部分主要起装饰作用,其榫卯连接节点位置在振动过程中较为薄弱,在对实际文物维护修缮过程中应引起重视并采取相关加固措施。  相似文献   

8.
 2008年汶川八级地震形成了至少257个堰塞坝,主震后发生的大量余震可能会影响堰塞坝的动力安全状态。堰塞坝体的动力特性参数(包括自振频率和阻尼比等)和加速度分布规律是堰塞坝地震安全研究的基础内容。通过大型振动台模型试验,研究在余震作用下模型堰塞坝体的动力特性参数、加速度分布规律及二者的影响因素,并根据动力相似律,计算原型坝体的动力特性参数。共进行2组不同材料的振动台模型试验,分别模拟含黏粒较多且颗粒较小(坝体I)和基本不含黏粒且颗粒较大(坝体II)的2种坝体。在不同地震波形输入、不同加速度峰值和不同水位条件下进行振动台试验。研究成果表明:(1) 模型坝体具有较稳定的X向和Z向自振频率和阻尼比。(2) 先期振动使坝体自振频率降低,阻尼比有增大趋势;坝体I的自振频率小于坝体II。水位变化对2种坝体自振频率的影响规律不一致。(3) 加速度放大倍数随高程增大而增大,最大加速度发生在坝顶处;相同高程测点加速度放大倍数最大值出现在上游或下游靠近坝坡表面处,即“表面放大”效应明显,说明坝坡表面容易受地震作用破坏。(4) 所含频谱成分与坝体自振频率接近的地震波会引起最大的加速度反应。Z向振动使坝体测点X向加速度放大倍数增大。加速度放大倍数一般随输入加速度峰值的增大而减小。  相似文献   

9.
A numerical study is conducted to investigate the dynamic behavior of earth dams. The numerical investigation employs a fully nonlinear dynamic finite difference analysis incorporating a simple elastic perfectly plastic constitutive model to describe the stress-strain response of the soil and the Rayleigh damping to increase the level of hysteretic damping. The extended Masing rules are implemented into the constitutive model to explain more accurately the soil response under general cyclic loading. The soil stiffness and hysteretic damping change with loading history. The procedures for calibrating the constructed numerical model with centrifuge test data and also a real case history are explained. For the latter, the Long Valley (LV) earth dam subjected to the 1980 Mammoth Lake earthquake as a real case-history is analyzed and the obtained numerical results are compared with the real measurements at the site in both the time and frequency domains. Relatively good agreement is observed between computed and measured quantities. It seems that the Masing rules combined with a simple elasto-plastic model gives reasonable numerical predictions. Afterwards, a comprehensive parametric study is carried out to identify the effects of dam height, input motion characteristics, soil behavior, strength of the shell materials and dam reservoir condition on the dynamic response of earth dams. Three real earthquake records with different levels and peak acceleration values (PGAs) are used as input motions. The results show that the crest acceleration decreases when the dam height increases and no amplification is observed. Further, more inelastic behavior and more earthquake energy absorption are observed in higher dams.  相似文献   

10.
以南宁地铁5号线金桥站为工程背景,根据模拟地震振动台试验的相似性理论,考虑地铁车站结构与土的材料性能、几何特性以及模型结构动力试验的相似关系等,设计制作了用于模拟地震振动台试验的无柱加腋地铁车站模型结构和试验用模型箱。选取El Centro地震波、Taft地震波和南宁人工地震波,同时考虑地铁车站结构上覆土厚度等参数的变化,进行了多种工况下的模拟地震振动台试验,研究了考虑地铁车站土-结构相互作用的无柱加腋地铁车站模型结构的地震响应特点和主要变化规律,分析了上覆土厚度对模型结构动力响应的影响,考察了结构抗震的薄弱部位和主要损伤区域。采用ABAQUS有限元软件建立考虑地铁车站土-结构相互作用的三维空间有限元模型,进行了相应工况下的模拟地震有限元时程分析,并与振动台试验结果进行了比较。结果表明:有限元模拟结果与振动台试验结果吻合较好,说明建立的有限元模型和分析方法可靠有效; 3种地震波下模型结构的主要地震响应特点基本相同,其加速度响应和位移响应都随输入峰值加速度的增大而增加; 上覆土厚度是影响车站模型结构加速度响应的重要因素,当上覆土厚度较薄时,车站模型结构的位移响应较大; 模型结构的侧墙与底板、中板连接的加腋处是开裂和损伤最严重的区域,侧墙裂缝呈竖向发展,并出现多道连续裂缝,应引起重视。  相似文献   

11.
《Soils and Foundations》2003,43(6):125-140
A series of tilting tests and shaking table tests was conducted with a geotechnical centrifuge apparatus to determine the dynamic active earth pressure of cement treated clay ground by investigating the seismic stability of cement treated clay ground having an unsupported vertical slope. In the tilting tests, the horizontal seismic inertia force was simulated statically by tilting the whole model ground in accordance with the horizontal seismic coefficient kh. The tilted model ground was subjected to monotonically increasing centrifugal acceleration until it failed due to the enhanced selfweight. In the shaking table tests, on the other hand, the model ground was subjected to dynamic excitations under a high centrifugal acceleration field. The magnitude of the dynamic excitation was increased stepwise until the model ground failed. It was found from both test results that the model ground failed with a combination of a vertical tensile crack and a straight shear failure plane, which was much different from the failure phenomenon of sandy or clayey ground. It was also found that the conventional pseudo-static limit equilibrium method such as Mononobe-Okabe’s earth pressure theory was not able to evaluate the critical height and the failure zone of the model ground accurately. Based on the model test results, a modified pseudo-static limit equilibrium method incorporating the tensile force along the crack plane was proposed in this study. In the method, the critical height and the failure zone of the cement treated ground were influenced by the strength ratio of the tensile strength to the compressive strength of the treated soil. It was found that the proposed method with a suitable strength ratio was able to predict the tilting test results with fairly high accuracy. Also, the proposed method seemed to be able to reasonably explain the shaking test results if the dynamic response acceleration of the model ground was carefully taken into account. Dynamic active earth pressure of cement treated clay ground was also discussed in which the importance of incorporating the failure pattern was emphasized.  相似文献   

12.
Structure‐soil‐structure interaction (SSSI) phenomena under earthquake excitations are investigated in this paper. Based on the results of the shaking table test, this work presents a 3‐dimensional finite element numerical simulation method using ANSYS software. In the simulation, an equivalent linear model is assumed for soil behavior, and contact elements are adopted to consider the nonlinearity state of the interface between foundation and surrounding soil. In addition, constrained equations are added to manage the uncoordinated degrees of freedom. By comparing the results of the finite element analysis with data obtained from the shaking table test, the dynamic response of the shaking table test can be simulated properly. Finally, the dynamic response of adjacent structures considering the SSSI effect is analyzed. The results show that with increased excitation, contact pressure, strain amplitude, and pile slip increase, whereas the peak acceleration magnification coefficient decreases. These results are significant for studying the effect of SSSI on seismic responses of structures.  相似文献   

13.
This paper presents the results of an experimental research on the behavior of geosynthetic encased stone columns and ordinary stone columns embedded in soft clay under dynamic base shaking. For this purpose, a novel laminar box is designed and developed to run a total of eight sets of 1-G shaking table tests on four different model soil profiles: Soft clay bed, ordinary stone column installed clay bed, and clay beds with geosynthetic encased columns with two different reinforcement stiffnesses. The geosynthetic encased columns are heavily instrumented with strain rosettes to quantify the reinforcement strains developing under the action of dynamic loads. The responses of the columns are studied through the deformation modes of the encased columns and the magnitude and distribution of reinforcement strains under dynamic loading. The response of the granular inclusion enhanced soft subsoil and embankment soil and the identification of the dynamic soil properties of the entire soil body are also discussed in this article. Finally, to determine the effect of dynamic loading on the vertical load carrying capacity, stress-controlled column load tests are undertaken both on seismically loaded and undisturbed columns.  相似文献   

14.
为了解济南典型地层及地铁隧道结构的地震动力响应特性,进而把握地铁隧道的抗震性能,首次使用济南粉质黏土作为模型土,开展了一组济南人工波输入情况下的振动台模型试验。试验结果显示:人工波在试验地层中加速度放大系数随测点埋深呈现反“之”字形规律;隧道结构变形主要受地层变形控制,地层水平变形随埋深增大而减小;济南粉质黏土层自振频率随着输入地震波强度增大而减小,阻尼比随输入地震波强度增大而增大。砂层自振频率随着输入地震波强度增大呈现先减小后增大的趋势,阻尼比呈现先增大后减小的趋势。这些结果可对济南地铁隧道的抗震设计提供重要的参考。  相似文献   

15.
In order to study the dynamic characteristics and seismic response of high‐rise buildings with a frame–core tube structure, while considering the effect of soil–structure interactions (SSIs), a series of shaking table tests were conducted on test models with two foundation types: fixed‐base (FB), in which the superstructure was directly affixed to the shaking table, and SSI, consisting of a superstructure, pile foundation, and soil. To increase the applicability of the model to the dynamic characteristics of real‐world tall buildings, the superstructure of test models was built at a scale of 1/50. This simulated a 41‐floor high‐rise building with a frame–core tube structure. The mode shape, natural frequency, damping ratio, acceleration and displacement response, story shear, and dynamic strain were determined in each of the test models under the excitation of simulated minor, moderate, and large earthquakes. The SSI effect on frame–core tubes was analyzed by comparing the results of the two test models. The results show that the dynamic characteristics and seismic response of the two systems were significantly different. Finally, these results were verified by performing a numerical analysis on the differences in the seismic responses of the FB and SSI numerical models under various simulated seismic conditions.  相似文献   

16.
《Soils and Foundations》2009,49(6):921-939
The paper illustrates theoretical and experimental procedures adopted to characterize the seismic response of earth dams by performance-based criteria. The study refers to a real case, the Camastra Dam, a zoned earth dam with vertical clay core, placed in a highly seismic zone of Southern Italy. At first, the analysis objectives have been identified along with the physical quantities needed to achieve them for characterizing dam seismic performance. A theoretical approach, consistent with the identified analysis objectives, has been later selected. The adopted approach is based on continuum mechanics and accounts for coupling between soil skeleton and pore water phase. It is also able to describe the main features of soil response under cyclic loading conditions since it implements an advanced constitutive law for the soil skeleton. Big effort has been paid to the mechanical characterization of the dam materials. In addition to data coming from the interpretation of the laboratory tests performed at the time of dam construction, in situ tests (SASW, Down Hole, DMT) have been recently carried out on the embankment and foundation soils and interpreted consistently with the requirements of the selected theoretical model. Preliminarily, the static stages of the dam lifetime have been numerically simulated to reproduce the behaviour observed in terms of cross-arm settlements and pore water pressures, in order to obtain or verify some soil parameters and initialize the state variables for the simulation of the seismic stages. A seismological study of the dam site provided the expected seismic scenarios in terms of time histories of acceleration, needed as input for the dynamic analyses. The seismic response of the Camastra Dam was finally investigated and discussed in the light of performance-based criteria.  相似文献   

17.
为了研究钢筋混凝土巨型框架结构体系的抗震性能及其地震作用损伤机理,设计制作1/25的缩尺模型,并设计加工了一套调谐质量阻尼器(TMD)装置安装在模型结构顶部,进行振动台试验,得到结构的动力特性和位移响应,并对比分析了TMD的减震效果。结果表明:当在峰值加速度为0.140g的地震波作用后(相当于原型7度多遇地震),模型结构处在弹性工作状态,在峰值加速度为0.400g的地震波作用后(相当于原型7度基本烈度),模型结构出现轻微破坏,在峰值加速度为0.880g的地震波作用后(相当于原型7度罕遇地震),模型结构出现中等破坏,该原型结构可以满足抗震设计的要求;TMD装置具有较好的减震效果。  相似文献   

18.
进行了液化场地-结构体系动力相互作用大型振动台试验,对土体和桩基的加速度反应、饱和砂土层的孔压反应等进行了测试。重点阐述了土体和群桩基础的加速度地震响应特征和饱和土体的孔压发展规律,并对土体侧向变形规律进行了分析。试验研究结果表明:0.05g拍波输入时,土体和桩基对加速度反应有着明显放大作用,土体各处孔压比增长幅度不大,土体侧向位移较小;0.3g汶川地震卧龙台地震记录输入时,桩基加速度反应规律与土体反应基本一致,土体孔压比增长明显,上部土体完全液化;土体水平侧向变形较大。本文成果可为液化场地-群桩基础动力相互作用研究做对比分析和验证数值模拟工作提供参考。  相似文献   

19.
In the areas of seismic engineering, shaking table tests are powerful methods for assessing the seismic capacity of buildings. Since the size and capacity of existing shaking tables are limited, using scale structural models seems to be necessary. In recent years, many experimental studies have been performed using shaking table tests to determine seismic response of structural models subjected to various earthquake records. However, none of the past research works discussed practical procedure for creating the physical model. Therefore, in this study, a comprehensive procedure for design, building and commissioning of scale tall building structural models has been developed and presented for practical applications in shaking table test programmes. To validate the structural model, shaking table tests and numerical time history dynamic analyses were performed under the influence of different scaled earthquake acceleration records. Comparing the numerical predictions and experimental values of maximum lateral displacements, it became apparent that the numerical predictions and laboratory measurements are in a good agreement. As a result, the scale structural model can replicate the behaviour of real tall buildings with acceptable accuracy. It is concluded that the physical model is a valid and qualified model that can be employed for experimental shaking table tests. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
《Soils and Foundations》2009,49(2):153-166
The seismic behaviour of asphaltic concrete core dam under earthquake loads has been studied. The study consists of three parts; element tests on asphalt concrete, numerical analysis and some model tests. In the first part, a series of triaxial monotonic and cyclic tests were performed at the Norwegian Geotechnical Institute (NGI)'s laboratory to determine the geotechnical parameters of asphalt concrete. Then, numerical analyses were carried out for Garmrood dam in Iran with a height of 110 m. The different stages of construction and impounding were analyzed using a hyperbolic stress-strain model. The dynamic analysis was then performed using two different models; nonlinear elasto-plastic material model and an equivalent linear method followed by the Newmark approach to estimate the permanent displacements. Finally, some 1-g model shaking table tests were performed on a typical rockfill dam to have a qualitative picture of the modes of seismic behaviour of an asphaltic concrete core rockfill dam. Element tests result shows that the asphaltic concrete is resistant to earthquake excitations and the earthquake has to be very strong to cause any detrimental cracking or material degradation of the properties of a ductile asphaltic concrete. In addition, the obtained results from numerical analysis and model tests show the appropriate response of the dam during and after earthquake caused shaking.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号