首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to evaluate shear behavior and failure mechanisms of composite systems comprised of a geosynthetic clay liner (GCL) and textured geomembrane (GMX). Internal and interface direct shear tests were performed at normal stresses ranging from 100 kPa to 2000 kPa on eight different GCL/GMX composite systems. These composite systems were selected to assess the effects of (i) GCL peel strength, (ii) geotextile type, (iii) geotextile mass per area, and (iv) GMX spike density. Three failure modes were observed for the composite systems: complete interface failure, partial interface/internal failure, and complete internal failure. Increasing normal stress transitioned the failure mode from complete interface to partial interface/internal to complete internal failure. The peak critical shear strength of GCL/GMX composite systems increased with an increase in GMX spike density. However, the effect of geotextile type and mass per area more profoundly influenced peak critical shear strength at normal stress > 500 kPa, whereby an increase in geotextile mass per area enhanced interlocking between a non-woven geotextile and GMX. Peel strength of a GCL only influenced the GCL/GMX critical shear strength when the failure mode was complete internal failure.  相似文献   

2.
The use of geosynthetic clay liners (GCLs) in waste containment applications can induce long-term normal and shear stresses as well as expose GCLs to elevated temperatures and non-standard hydration solutions. Considering the importance of GCL internal shear strength to the design and integrity of waste containment barrier systems, innovative laboratory testing methods are needed to assess shear behavior of GCLs. There were two main objectives of this study: (i) develop a stress-controlled direct shear apparatus capable of testing GCLs exposed to elevated temperatures and hydrated in non-standard solutions; and (ii) assess internal shear behavior of GCLs under varying experimental conditions (e.g., stress, temperature, solution). These two objectives were partitioned into a two-paper set, whereby Part I (this paper) focuses on the shear box design and Part II focuses on an assessment of shear behavior. The direct shear apparatus includes a reaction frame to mitigate specimen rotation that develops from an internal moment within needle-punched reinforced GCLs. Rapid-loading shear tests were conducted to assess functionality of the apparatus and document baseline shear behavior for a heat-treated and a non-heat treated needle-punched GCL with comparable peel strength. These two GCLs failed at comparable applied shear stress; however, the heat-treated GCL yielded lower shear deformation and failure occurred via rupture of reinforcement fiber anchors, whereas the non-heat treated GCL yielded larger shear deformation and failure via pullout of reinforcement fibers.  相似文献   

3.
Torsional ring shear tests were performed on composite specimens that simulate the field alignment of municipal solid waste (MSW) landfill liner and cover system components. Simultaneous shearing was provided to each test specimen without forcing failure to occur through a pre-determined plane. Composite liner specimens consisted of a textured geomembrane (GM) underlain by a needle-punched geosynthetic clay liner (GCL) which in turn underlain by a compacted silty clay. Hydrated specimens were sheared at eleven different normal stress levels. Test results revealed that shear strength of the composite liner system can be controlled by different failure modes depending on the magnitude of normal stress and the comparative values of the GCL interface and internal shear strength. Failure following these modes may result in a bilinear or trilinear peak strength envelope and a corresponding stepped residual strength envelope. Composite cover specimens that comprised textured GM placed on unreinforced smooth GM-backed GCL resting on compacted sand were sheared at five different GCL hydration conditions and a normal stress that is usually imposed on MSW landfill cover geosynthetic components. Test results showed that increasing the GCL hydration moves the shearing plane from the GCL smooth GM backing/sand interface to that of the textured GM/hydrated bentonite. Effects of these interactive shear strength behaviors of composite liner and cover system components on the possibility of developing progressive failure in landfill slopes were discussed. Recommendations for designing landfill geosynthetic-lined slopes were subsequently given. Three-dimensional stability analysis of well-documented case history of failed composite system slope was presented to support the introduced results and recommendations.  相似文献   

4.
Semipermeable membrane behavior in clays refers to the ability of clays to restrict the migration of solutes. Thus, membrane behavior represents a potential benefit to the containment function of clay barriers used for hydraulic containment applications. In this regard, the potential influence of consolidation effective stress, σ′, on the membrane behavior of a geosynthetic clay liner (GCL) containing sodium bentonite was evaluated in the laboratory by establishing differences in salt (KCl) concentrations ranging from 3.9 to 47 mM across specimens of the GCL in a flexible-wall cell under closed-system boundary conditions. The membrane behavior exhibited by the GCL was enhanced via consolidation such that an increase in σ′ from 34.5 kPa (5 psi) to 241 kPa (35 psi) correlated with an increase in membrane efficiency from 0.015 (1.5%) to 0.784 (78.4%), respectively. The membrane efficiencies measured in this study at σ′ of 172 kPa (25 psi) and 241 kPa (35 psi) were similar to those previously reported for the same GCL using a rigid-wall cell but at unknown states of stress. The practical significance of the results is illustrated in the form of an analysis showing a reduction in liquid flux across the GCL with increasing membrane efficiency.  相似文献   

5.
This paper presents a novel suction-controlled chamber that permits the determination of the full water retention curves of geosynthetic clay liners (GCLs) under non-uniform temperature-stress paths. It investigates field conditions encountered in brine ponds (low confining stress settings) and heap leach pads (high confining stress settings) during construction and operation stages. Consequently, the analysis of the moisture dynamics in a GCL was defined under the wetting path (construction) and drying path (operation). High vertical stresses were found to facilitate a more rapid water uptake as capillarity is established faster than at low, confined stresses. In general, the drying curves increase the water desorption over the suction range investigated due to the low water viscosity caused by high temperatures. The wetting of the GCL at 20 °C and drying at 70 °C under either low, confined stress (2 kPa) or high confining stress (130 kPa) shows a reduction in the volumetric water contents. Furthermore, on the drying path, the coupled effect of elevated temperature and high confining stress accelerates water desorption leading possibly to potential desiccation.  相似文献   

6.
The effect of a gravel subgrade on the hydraulic performance of GCLs is investigated. Laboratory test results show that the GCL specimens exhibit significant variation in thickness when compressed against gravel. The maximum and minimum thicknesses of the specimen were about 20 and 3 mm, respectively, after consolidation by an effective stress up to 138 kPa. However, the permittivity of GCLs remained very low. The permittivity of both needle-punched and adhesive-bonded geotextile-supported GCLs decreased with increasing confining stress, regardless of the type of subgrade materials. In general, larger particles led to more significant migration of bentonite. Nevertheless, there was no significant difference in the degree of bentonite migration between the two GCLs investigated.  相似文献   

7.
Geosynthetic clay liners (GCLs) are typically used for widening sections of an embankment. They are also used as low permeability liners to minimize water leakage from reservoirs such as irrigation ponds. However, few investigations have been carried out on the specific properties of GCLs, such as granulated bentonite sandwiched between geotextiles, their internal shear strength, and the shear strength at the interface between a GCL and an embankment body. In this study, a series of direct box shear tests were performed to determine the shear strength properties of bentonite and compacted soils as well as at the interface between a GCL and bentonite or compacted soil. In addition, a series of field-loading tests were conducted to investigate the failure behaviour of an embankment body containing a GCL when changes in the water content of the bentonite of the GCL in a real embankment occur. Furthermore, the stability of widened embankment bodies that incorporated GCLs were evaluated. The main conclusions of this study are as follows: (1) The shear strength of the interface between the covering soil and geotextiles varied according to the soil type, geotextile type, and the submergence period, (2) the maximum safety factor was observed at the interface between decomposed granite soil and the geotextiles, while the minimum safety factor was observed at the interface between the bentonite and the geotextiles, and (3) the influence of GCLs on the instability of a widened embankment was extremely small.  相似文献   

8.
The hydraulic and swelling properties of a polymerized bentonite (PB), and the self-healing capacity of a geosynthetic clay liner (GCL) using the PB as the core material (PB-GCL) were investigated experimentally. Five different test liquids included of deionized water, NaCl solutions (0.1 M and 0.6 M) and CaCl2 solutions (0.1 M and 0.6 M) were used in this study. The PB exhibited a higher free swelling index (FSI) than that of the untreated bentonite (UB) for all test liquids. For permeability test, under a given void ratio (e), the value of k of the PB is much lower than that of the UB in NaCl and CaCl2 solutions. The PB-GCL specimens demonstrated a higher self-healing capacity than that of the corresponding GCL specimens using the UB (UB-GCL). Specifically, when using a 0.6 M CaCl2 solution for a 20-mm-diameter damage hole, the UB-GCL specimen provided a zero healing ratio (healed damage area/total damage area), but the PB-GCL specimen demonstrated an approximately 76% healing ratio. The results from this study indicate that the PB-GCL provided better barrier performance against cationic liquids with higher cation valence and concentrations compared to that of the UB-GCL.  相似文献   

9.
The effect of water salinity on the water retention curve of geosynthetic clay liners (GCLs), under constant volume condition is examined. The results indicate that at a constant gravimetric moisture content the total suction increases as the salinity of the wetting liquid increases. Furthermore, the difference in total suction between the GCL hydrated by saline water and distilled water is greater than the difference in the osmotic potential of the wetting water. This behaviour is possibly caused by the matric suction being affected by the expected chemically induced pore size change of the bentonite component of the GCL.  相似文献   

10.
The high ionic strength of the porewater in red mud (bauxite liquor from digestion) can suppress swelling of montmorillonite, resulting in geosynthetic clay liners (GCLs) that are too permeable to be effective as liners in red mud disposal facilities. Bentonite-polymer composite GCLs (BPC GCLs) have been developed as more resilient lining materials, and some BPC GCLs have been shown to have very low hydraulic conductivity to bauxite liquors that have extreme ionic strength and pH. In this study, a nationwide investigation was conducted in China to evaluate the characteristics of bauxite liquor in Chinese impoundments, and to evaluate the suitability of GCLs containing granular sodium bentonite or BPCs for containment. Hydraulic conductivity tests were conducted on six BPC GCLs with two characteristic Chinese bauxite liquors that are hyperalkaline (pH > 12) and had ionic strengths of 76.9 mM and 620.3 mM. The BPC GCLs had hydraulic conductivity ranging from 10?8-10?12 m/s, which is higher than the hydraulic conductivity of BPC GCLs to deionized water (10?12-10?13 m/s), but lower than the hydraulic conductivity of conventional GCLs with granular sodium bentonite GCLs to the same liquors (10?7-10?8 m/s). The hydraulic conductivity of the BPC GCLs depends on the chemical properties of the leachate, the polymer loading, and the type of polymer. Microstructural analysis by scanning electron microscopy (SEM) suggests that the hydraulic conductivity of BPC GCLs is controlled by pore-blocking by polymer hydrogel, which is affected by the bauxite liquor.  相似文献   

11.
The composite liner system consisting of geomembrane (GMB) and geosynthetic clay liner (GCL) has been widely used in landfills. Although there have been a lot of studies on the monotonic shear behavior of GMB/GCL composite liner, the dynamic test data are still very limited and consequently, the dynamic shear mechanism is not clear. A series of displacement-controlled cyclic shear tests were conducted to study the shear behavior of GMB/GCL composite liner, including the shear stress versus horizontal displacement relationships, backbone curves, and shear strengths. Hysteretic loops in the shape of parallelogram were obtained and equivalent linear analyses revealed that the secant shear stiffness decreased and the damping ratio increased with the rise in loading cycles. According to the test results, it is generally acceptable to predict the dynamic peak strength of a GMB/GCL composite liner with its static strength envelope. Furthermore, the dynamic softening mechanism and rate-dependent shear stiffnesses were well described by the proposed equations, which also facilitate the accurate modeling of the cyclic shear behavior.  相似文献   

12.
Flow in an idealized geosynthetic clay liner (GCL) containing bentonite comprised of equisized and equispaced square granules was simulated using a hydrodynamic model to quantitatively evaluate the premise that the hydraulic conductivity of GCLs diminishes as the bentonite granules hydrate and swell into adjacent intergranular pores, creating smaller and tortuous intergranular flow paths. Predictions with the model indicate that hydraulic conductivity decreases as granules swell and intergranular pores become smaller, and that greater granule swelling during hydration is required to achieve low hydraulic conductivity when the bentonite is comprised of larger granules, or the bentonite density is lower (lower bentonite mass per unit area). Predictions made with the model indicate that intergranular pores become extremely small (<1 μm) as the hydraulic conductivity approaches 10−11 m/s. These outcomes are consistent with experimental data showing that GCLs are more permeable when hydrated and permeated with solutions that suppress swelling of the bentonite granules, and that the hydraulic conductivity of GCLs with bentonite having smaller intergranular pores (e.g., GCLs with smaller bentonite granules, more broadly graded particles, or higher bentonite density) is less sensitive to solutions that suppress swelling.  相似文献   

13.
This paper examines the hydration/dehydration behaviour of geosynthetic clay liner (GCL) under polar conditions for four simulated conditions experienced at Australia's Casey Station in Antarctica: (a) hydration during summer, (b) dehydration during a winter-summer cycle, (c) hydration through a fine Antarctic soil, and (d) hydration through a coarse Antarctic soil. Hydration during the summer is found to occur if there is direct contact with the water table. In contrast, the low relative humidity of the environment tends to dehydrate the GCL along a path that depends on the field conditions the GCL is exposed to. Hydration from either fine or coarse Antarctica soil is function of the original gravimetric water content of the subgrade soil and its grain size distribution as well as the low relative humidity prevailing in Antarctica.  相似文献   

14.
This paper is the second of a two-paper set on stress-controlled direct shear testing of geosynthetic clay liners (GCLs). Design of the apparatus, preliminary experiments, and shear deformation mechanisms in heat-treated and non-heat treated needle-punched (NP) GCLs were discussed in Part I. The objective of Part II (this paper) was to evaluate the effects of physical factors (i.e., peel strength and initial normal stress, σni), environmental factors (i.e., temperature and hydration solution), and creep on the internal shear behavior of NP GCLs. In addition, failure conditions of GCLs in the stress-controlled direct shear tests were compared to displacement-controlled direct shear tests to verify results. An increase in internal shear strength developed from increased GCL peel strength or increased normal stress. Elevated temperatures were observed to decrease internal shear strength for both non-heat treated and heat-treated NP GCLs. Specimens hydrated with a calcium-rich synthetic mining solution experienced increased internal shear strength due to cation exchange in the bentonite, whereas specimens hydrated with a highly alkaline synthetic mining solution experienced decreased internal shear strength. Creep tests revealed an increase in time-to-failure with decrease in applied shear stress. Finally, stress states at failure from stress-controlled and displacement-controlled shear tests corresponded to a unique failure envelope, which validates the efficacy of using stress-controlled direct shear tests to assess internal shear behavior and shear strength of NP GCLs.  相似文献   

15.
GCLs containing powdered Na-bentonite treated with different dosages of a proprietary additive intended to reduce the impacts of chemical interactions were permeated with three solutions: a hyperalkaline solution (1 M NaOH and 1.3 mM CsCl) having similar pH to aluminum refining leachate, a 1.3 mM CsCl solution (no NaOH), and DI water. For a given permeant solution, the hydraulic conductivity of both GCLs was similar. Thus, the higher additive dosage had no measureable impact on hydraulic conductivity. Hydraulic conductivity of both GCLs decreased by a factor of approximately 1.5–1.8 during permeation with CsCl in response to osmotic swelling induced by the low ionic strength of the CsCl solution entering the pore space. In contrast, permeation with the NaOH–CsCl solution caused the hydraulic conductivity of both GCLs to increase modestly (<50 times the hydraulic conductivity to DI water), and then level out (or decrease slightly) as a result of reduced osmotic swelling in the interlayer combined with dissolution of the mineral. For the tests conducted with CsCl solution, nearly all of the Cs was adsorbed by the bentonite. In contrast, Cs broke through readily when the NaOH–CsCl solution was used as the permeant solution. Permeation with the NaOH–CsCl solution also increased the sodicity of the bentonite by replacing bound K, Ca, and Mg on the mineral surface.  相似文献   

16.
17.
Geosynthetic clay liners (GCLs) are placed at the bottom of waste disposal facilities where they hydrate from the subsoil and eventually from a hydraulic head on geomembranes (GMs) defects. Predicting hydration behavior of GCLs requires knowledge of the water-retention properties of the GCL along wetting paths. Given that GCLs could be subjected to different ranges of vertical stresses that are induced by the weight of the supported waste, the confining stress could affect water-retention properties of GCLs and should be investigated. To do so, a laboratory methodology to establish the water-retention curves (WRCs) of needlepunched GCLs under stress was undertaken. Various constant vertical stresses corresponding to different weights of the supported waste were applied to GCL specimens placed in controlled-suction oedometers. Suction values were selected so as to mimic a wetting path from the initial dry state to zero suction. Suction was controlled by using controlled suction techniques with controlled humidity imposed by a saturated saline solutions and using the osmotic technique with polyethylene glycol (PEG) solutions. Measurements were undertaken on oedometer systems as to apply confining stresses and have been complemented by standard saturated oedometer swelling tests. The data obtained confirm that increasing the stress on to the GCL results in less, albeit faster, water uptake, which could emphasize on recommendations about rapidly covering GCLs after they are placed at the bottom of a waste disposal facilities. Finally, the potential validity of the state-surface concept, which was developed in unsaturated soil mechanics, is discussed using van Guenuchten's and Fredlund and Xing's equations for water retention curves.  相似文献   

18.
《Soils and Foundations》2019,59(6):1830-1844
Geosynthetic clay liners (GCLs), used to repair small earth dams, are typically installed with the GCL panel placed parallel to the upstream slope of the dam or on the surface of benches cut into the upstream side of the earth dam fill. While the former requires less earthwork, leading to a more cost-effective and rapid construction, it can potentially introduce a plane of weakness if the interface shear strength between the GCL and the cover soil is less than the shear strength of the cover soil. The inclusion of benches in the upstream slope of an earth dam can potentially be an effective strategy for reducing the significance of this preferential failure plane, resulting in an increased seismic performance during earthquakes. However, the expected increase in seismic performance has not yet been quantified in large-scale shaking table tests. In this study, a full-scale shaking table test on an earth dam with a GCL installed parallel to the upstream slope of the dam is reported and compared to previously published results from tests on an identical earth dam with the GCL placed in the benched configuration under the same seismic boundary conditions. The results indicate that, for the configuration tested, the seismic deformation of the benched installation was half of that of the earth dam with the GCL installed parallel to the slope, providing significant motivation for adopting the benched installation method.  相似文献   

19.
In this study, the downstream slope of a dam impounding the upper reservoir of Lam Ta Khong (LTK) hydroelectric energy storage in Thailand was found to slide at a higher pace during the rainy season. After a thorough site investigation, laboratory tests, and numerical modeling to identify the main cause of the movement, it was found that as rainfall infiltrated the upper soil layer, the claystone of the downstream slope deteriorated when in contact with the water. As a remedial measure, 174,750 m2 of geosynthetic clay liner (GCL) was used to cover the entire downstream slope of the dam, and proved to be an effective and economical solution for reducing the ongoing movement. The GCL included a textured high-density polyethylene (HDPE) layer for improving the resistance and minimizing the slippage at the interface between the GCL and underlying rock. Before the dam's remediation, the settlement point demonstrated a movement of nearly 0.1 m/year. In contrast, after the placement of the GCL, almost all settlement points moved less than 0.1 m for a recorded period of more than 4 years.  相似文献   

20.
氨氮是垃圾渗滤液中最具代表性的污染物之一,但其在土工合成黏土衬垫(GCL)中的扩散行为至今尚未得到重视。开展批式吸附试验和扩散试样浸提试验测定氨氮在GCL中的吸附分配系数;进行扩散试验测定氨氮在GCL中的扩散系数;基于试验得到的吸附分配系数和扩散系数,使用数值软件POLLUTE v7.0对氨氮在GCL中的运移行为进行模拟。试验结果表明,氨氮在膨润土上的吸附分配系数为0.017L/g,在GCL中的扩散系数约为9.0×10-11m2/s。POLLUTE v7.0的模拟结果显示,当考虑扩散存在时,氨氮将提前30 a击穿GCL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号