共查询到20条相似文献,搜索用时 15 毫秒
1.
《Ceramics International》2020,46(15):24029-24037
Three kinds of Gd2Zr2O7/ZrO2 (GZC) composite fibers with different proportions of Gd2Zr2O7 were prepared by electrospinning method through changing the amount of Gd3+ in precursor solutions. The thermal decomposition, crystallization process, high temperature stability and heat-conducting properties of GZC fibers were fully characterized. The results showed that there were three crystalline phases, tetragonal phase ZrO2, cubic phase ZrO2 and defect fluorite phase Gd2Zr2O7 in all the GZC fibers. The content of Gd2Zr2O7 increased gradually with the increase of Gd3+ in precursor solutions which led to the gradual slowing down of grain growth rate, the decrease of thermal conductivity and the increase of high temperature stability of the obtained composite fibers. The thermal conductivities of all the GZC fiber sheets were lower than that of 7YSZ fiber sheet. The sheets of all the GZC fibers could keep the high temperature stability up to 1300 °C. 相似文献
2.
《Journal of the European Ceramic Society》2014,34(5):1255-1263
(Gd1−xYbx)2Zr2O7 compounds were synthesized by solid reaction. Yb2O3 doped Gd2Zr2O7 exhibited lower thermal conductivities and higher thermal expansion coefficients (TECs) than Gd2Zr2O7. The TECs of (Gd1−xYbx)2Zr2O7 ceramics increased with increasing Yb2O3 contents. (Gd0.9Yb0.1)2Zr2O7 (GYbZ) ceramic exhibited the lowest thermal conductivity among all the ceramics studied, within the range of 0.8–1.1 W/mK (20–1600 °C). The Young's modulus of GYbZ bulk is 265.6 ± 11 GPa. GYbZ/YSZ double-ceramic-layer thermal barrier coatings (TBCs) were prepared by electron beam physical vapor deposition (EB-PVD). The coatings had an average life of more than 3700 cycles during flame shock test with a coating surface temperature of ∼1350 °C. Spallation failure of the TBC occurred by delamination cracking within GYbZ layer, which was a result of high temperature gradient in the GYbZ layer and low fracture toughness of GYbZ material. 相似文献
3.
《Ceramics International》2016,42(15):16584-16588
3.5 mol% Er2O3 stabilized ZrO2 (ErSZ) and Gd2Zr2O7 powders were produced by a chemical co-precipitation and calcination method, and ErSZ was used to toughen Gd2Zr2O7. The phase structure, toughness and thermal conductivities of ErSZ toughened Gd2Zr2O7 ceramics were investigated. When the ErSZ content was below 15 mol%, the compound consisted of pyrochlore phase, the ordering degree of which decreased with the increase of the ErSZ content. High ErSZ doping led to the formation of metastable tetragonal (t′) phase in the compound. The addition of ErSZ in Gd2Zr2O7 benefited its toughness, mainly attributable to the presence of t′ phase in the compound. With the increase of the ErSZ content in the compound, the thermal conductivity first decreased and then showed an upward tendency, and 10 mol% ErSZ toughened Gd2Zr2O7 exhibited the lowest thermal conductivity. 相似文献
4.
《Ceramics International》2017,43(5):4048-4054
Zirconates with pyrochlore structure, such as Gd2Zr2O7, are new promising thermal barrier coatings because of their very low thermal conductivity and good chemical resistance against molten salts. However, their coefficient of thermal expansion is low, therefore their thermal fatigue resistance is compromised. As a solution, the combination of yttria-stabilised zirconia (YSZ) and Gd2Zr2O7 can reduce the thermal contraction mismatch between the thermal barrier coating parts.In the present study, two possible designs have been performed to combine YSZ/Gd2Zr2O7. On the one hand, a multilayer coating was obtained where YSZ layer was deposited between a Gd2Zr2O7 layer and a bond coat. On the other hand, a functionally-graded coating was designed where different layers with variable ratios of YSZ/Gd2Zr2O7 were deposited such that the composition gradually changed along the coating thickness.Multilayer and functionally-graded coatings underwent isothermal and thermally-cycled treatments in order to evaluate the oxidation, sintering effects and thermal fatigue resistance of the coatings. The YSZ/Gd2Zr2O7 multilayer coating displayed better thermal behaviour than the Gd2Zr2O7 monolayer coating but quite less thermal fatigue resistance compared to the conventional YSZ coating. However, the functionally-graded coating displays a good thermal fatigue resistance. Hence, it can be concluded that this kind of design is ideal to optimise the behaviour of thermal barrier coatings. 相似文献
5.
Gd2O3 and Yb2O3 co-doped 3.5 mol% Y2O3–ZrO2 and conventional 3.5 mol% Y2O3–ZrO2 (YSZ) powders were synthesized by solid state reaction. The objective of this study was to improve the phase stability, mechanical properties and thermal insulation of YSZ. After heat treatment at 1500 °C for 10 h, 1 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (1Gd1Yb-YSZ) had higher resistance to destabilization of metastable tetragonal phase than YSZ. The hardness of 5 mol% Gd2O3–1 mol% Yb2O3 co-doped YSZ (5Gd1Yb-YSZ) was higher than that of YSZ. Compared with YSZ, 1Gd1Yb-YSZ and 5Gd1Yb-YSZ exhibited lower thermal conductivity and shorter phonon mean free path. At 1300 °C, the thermal conductivity of 5Gd1Yb-YSZ was 1.23 W/m K, nearly 25% lower than that of YSZ (1.62 W/m K). Gd2O3 and Yb2O3 co-doped YSZ can be explored as a candidate material for thermal barrier coating applications. 相似文献
6.
《Ceramics International》2019,45(13):16450-16457
The study underlines the impact of Ti4+ substitution in Gd2Zr2O7 for applications in thermal barrier coatings (TBC). Depending on the Ti4+ content, two different crystal structures of Gd2Zr2O7 namely pyrochlore and fluorite were determined. Ti4+ substitutions in the increasing order induced a gradual contraction of Gd2Zr2O7 unit cell; however, with the accomplishment of concentration dependent crystal structures of either single phase pyrochlore or mixtures of pyrochlore and fluorite. Absorption measurements enunciated the enhanced infra-red reflectance behaviour of Gd2Zr2O7 due to Ti4+ substitutions. A gradual increment in the concentration of Ti4+ substitutions in Gd2Zr2O7 envisaged a simultaneous porous to dense morphological features, which reflected in the resultant mechanical data. Hot corrosion studies ensure the critical role of Ti4+ to retain the crystal structure of Gd2Zr2O7. 相似文献
7.
《Journal of the European Ceramic Society》2023,43(14):6398-6406
High-performance ceramics with low thermal conductivity, high mechanical properties, and idea thermal expansion coefficients have important applications in fields such as turbine blades and automotive engines. Currently, the thermal conductivity of ceramics has been significantly reduced by local doping/substitution or further high-entropy reconfiguration of the composition, but the mechanical properties, especially the fracture toughness, are insufficient and still need to be improved. In this work, based on the high-entropy titanate pyrochlore, TiO2 was introduced for composite toughening and the high-entropy (Ho0.2Y0.2Dy0.2Gd0.2Eu0.2)2Ti2O7-xTiO2 (x = 0, 0.2, 0.4, 1.0 and 2.0) composites with high hardness (16.17 GPa), Young's modulus (289.3 GPa) and fracture toughness (3.612 MPa·m0.5), low thermal conductivity (1.22 W·m−1·K−1), and thermal expansion coefficients close to the substrate material (9.5 ×10−6/K) were successfully prepared by the solidification method. The fracture toughness of the composite toughened sample is 2.25 times higher than that before toughening, which exceeds most of the current low-thermal conductivity ceramics. 相似文献
8.
《Journal of the European Ceramic Society》2017,37(10):3425-3434
Nanostructured 30 mol% LaPO4 doped Gd2Zr2O7 (Gd2Zr2O7-LaPO4) thermal barrier coatings (TBCs) were produced by air plasma spraying (APS). The coatings consist of Gd2Zr2O7 and LaPO4 phases, with desirable chemical composition and obvious nanozones embedded in the coating microstructure. Calcium-magnesium-alumina- silicate (CMAS) corrosion tests were carried out at 1250 °C for 1–8 h to study the corrosion resistance of the coatings. Results indicated that the nanostructured Gd2Zr2O7-LaPO4 TBCs reveals high resistance to penetration by the CMAS melt. During corrosion tests, an impervious crystalline reaction layer consisting of Gd-La-P apatite, anorthite, spinel and tetragonal ZrO2 phases forms on the coating surfaces. The layer is stable at high temperatures and has significant effect on preventing further infiltration of the molten CMAS into the coatings. Furthermore, the porous nanozones could gather the penetrated molten CMAS like as an absorbent, which benefits the CMAS resistance of the coatings. 相似文献
9.
《Ceramics International》2023,49(18):29729-29735
Herein, five new La2Zr2O7 based high-entropy ceramic materials, such as (La0.2Ce0.2Gd0.2Y0.2Er0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7, (La0.2Gd0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Y0.2Er0.2Sm0.2)2Zr2O7, (La0.2Ce0.2Gd0.2Y0.2Sm0.2)2Zr2O7), were synthesized using a sol-gel and high-temperature sintering (1000 °C) method. The spark plasma sintered (SPS) (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 pellet shows a low thermal conductivity of 1.33 W m-1 K-1 at 773 K, and it also exhibits better CaO–MgO–Al2O3–SiO2 corrosion resistance than that of Y2O3 stabilized ZrO2. It shows that (La0.2Ce0.2Gd0.2Er0.2Sm0.2)2Zr2O7 has a promising application potential as a thermal barrier coating. 相似文献
10.
11.
《Journal of the European Ceramic Society》2023,43(8):3553-3562
MgO-Y2O3:Eu composite ceramics with high quantum yield and excellent thermal performance were successfully synthesized by vacuum sintering. All samples exhibited uniform composite microstructures and pure binary phase. Eu3+ ions were completely incorporated into Y2O3 phase, and the optimal Eu concentration is 15 at%. Sintered at 1800 °C, the fluorescent properties of MgO- z vol% Y2O3: Eu (z = 30, 40, 50, 60, 70, 100) composites proved to be independent on component proportion, including the similar fluorescence lifetimes (953–983 μs), quantum yield (70%−80%), and activation energy (ΔE) of thermal quenching (0.163 eV). Significantly, thermal conductivity of composites with 30 vol%, 50 vol% and 70 vol% MgO attained 11.58, 17.45, and 29.65 W/(m∙K) at room temperature, which are nearly 2, 3, and 5 times as high as that of 15 at% Eu:Y2O3 ceramic (5.90 W/(m∙K)), respectively, demonstrating their potential for application in high-power-density display and lighting technology. 相似文献
12.
《Journal of the European Ceramic Society》2020,40(2):480-490
Double layer thermal barrier coatings (TBCs) consisting of a Gd2Zr2O7 (GZO) top and an ytrria stabilized zirconia (YSZ) interlayer have been tested in a burner rig facility and the results compared to the ones of conventional YSZ single layers. In order to gain insight in the high temperature capability of the alternative TBC material, high surface temperatures of up to 1550 °C have been chosen while keeping the bond coat temperature similar. It turned out that the performance of all systems is largely depending on the microstructure of the coatings especially reduced porosity levels of GZO being detrimental. In addition, it was more difficult in GZO than in YSZ coatings to obtain highly porous and still properly bonded microstructures. Another finding was the reduced lifetime with increasing surface temperatures, the amount of reduction is depending on the investigated system. The reasons for this behavior are analyzed and discussed in detail. 相似文献
13.
《Ceramics International》2020,46(11):18888-18894
Ceramic materials for the thermal barrier coating (TBC) application of Gd2Zr2O7 (GZO), (Gd0.94Yb0.06)2Zr2O7 (GYb0.06Z), (Gd0.925Sc0.075)2Zr2O7 (GSc0.075Z), (Gd0.865Sc0.075Yb0.06)2Zr2O7 (GSc0.075Yb0.06Z), and (Gd0.8Sc0.1Yb0.1)2Zr2O7 (GSc0.1Yb0.1Z) were successfully synthesized by chemical co-precipitation. The effects of the doping of Sc2O3 and Yb2O3 on the phases, thermo-physical and mechanical properties of the ceramics were investigated. The results show that both Yb2O3 and Sc2O3 doping promoted the phase transition of GZO from pyrochlore to fluorite. All the Sc2O3-doped samples exhibited enhanced fracture toughness, as compared to the undoped sample. Furthermore, the GSc0.075Yb0.06Z sample revealed a thermal conductivity of ~0.8 W/mK at 1200 °C, which was nearly 30% lower than that of the undoped sample. The associated mechanisms related to the effects of the doping on the thermophysical and mechanical properties are discussed. 相似文献
14.
《Ceramics International》2020,46(13):21367-21377
In this work, Gd2Hf2O7 ceramics were synthesized and investigated as a potential thermal barrier coating (TBC) material. The phase composition, microstructure and associated thermal properties of Gd2Hf2O7 ceramics were characterized systematically. Results show that the thermal conductivity of Gd2Hf2O7 ceramics is 1.40 Wm−1K−1 at 1200 °C, ~25% lower than that of 8 wt% yttria partially stabilized zirconia (8YSZ). Gd2Hf2O7 ceramics also present large thermal expansion coefficients, which decrease from 12.0 × 10−6 K−1 to 11.3 × 10−6 K−1 (300–1200 °C). Besides, the hot corrosion behaviors of Gd2Hf2O7 ceramics exposed to V2O5 and Na2SO4 + V2O5 salts at temperatures of 900–1200 °C were discussed in great detail. We pay much attention on the corrosion process, corrosion mechanism and corrosion damage of Gd2Hf2O7 ceramics subjected to molten V2O5 and Na2SO4 + V2O5 salts at different temperatures. 相似文献
15.
《Ceramics International》2019,45(11):14223-14228
Electrospinning derived nanostructured CeO2 and ZnOCeO2 composite fibers have been successfully fabricated, followed by a subsequent heat-treatment. X-ray line profile analysis is applied to the X-ray diffraction data collection for determination of microstructure parameters both area -and volume-averaged apparent crystallites size based on spherical crystallites with lognormal size distribution. The surface morphologies of the prepared samples were examined with scanning electron microscope (SEM). To gain insight into the optical properties of the fabricated nanofibers, the UV–vis diffuse reflectance absorption spectrums were measured. The correlation between the structural and optical properties is discussed. 相似文献
16.
《Journal of the European Ceramic Society》2022,42(13):5964-5972
Dimensions and thermal insulation properties of nanoporous ceramics are unstable at high temperatures due to structural disruptions. This work prepared high entropy (LaCeSmEuNd)2Zr2O7 ceramic aerogel via non-alkoxide sol-gel, supercritical drying, and calcination. XRD and EDS analysis showed that the (LaCeSmEuNd)2Zr2O7 ceramic existed as a single phase. SEM images demonstrated the successful synthesis of aerogel structure. After two hours of annealing at 1200 °C, the cylindrical sample pressed from (LaCeSmEuNd)2Zr2O7 ceramic aerogel had a compressive strength of 58.75 MPa, and its diameter shrinkage was 0.56%, whereas the La2Zr2O7 reached 13.68%. The thermal diffusivity of annealed (LaCeSmEuNd)2Zr2O7 was as low as 0.119 mm2 s?1, and its thermal conductivity at room temperature was 0.073 W·m?1 K?1, which was attributed to lattice disorder, stable porous structure, and abundance of grain boundaries caused by high entropy effects. Extending the high entropy effect to ceramic nano-insulation products is beneficial for enhancing their thermal stability. 相似文献
17.
《Ceramics International》2020,46(9):13040-13046
Gd2Zr2O7 ceramics demonstrate important prospect in the immobilization of high-level radioactive wastes (HLWs). In this study, Gd2Zr2O7 nanoceramics were fabricated using two-step method, where Gd2Zr2O7 nanopowder was firstly synthesized by solvothermal method and Gd2Zr2O7 nanoceramics were subsequently sintered via self-propagating chemical furnace plus quick pressing (SCF/QP). The characterization results display that the Gd2Zr2O7 nanocrystalline ceramics with average grain size of 78 nm and bulk density of 5.53 g cm−3 were successfully prepared. The results of MCC-1 static leaching experiments show that the normalized release rate (LRi) of Gd is 2.2 × 10−2 g m−2•d−1 on the first day and converges to 1.2 × 10−3 g m−2•d−1 after 42 days. Zr shows superior chemical stability as the 21 days LRZr value is as low as 2.7 × 10−6 g m−2•d−1, which becomes constant as the leaching duration prolongs. 相似文献
18.
《Ceramics International》2016,42(11):12922-12927
The single-ceramic-layer (SCL) Sm2Zr2O7 (SZO) and double-ceramic-layer (DCL) Sm2Zr2O7 (SZO)/8YSZ thermal barrier coatings (TBCs) were deposited by atmospheric plasma spraying on nickel-based superalloy substrates with NiCoCrAlY as the bond coat. The mechanical properties of the coatings were evaluated using bonding strength and thermal cycling lifetime tests. The microstructures and phase compositions of the coatings were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. The results show that both coatings demonstrate a well compact state. The DCL SZO/8YSZ TBCs exhibits an average bonding strength approximately 1.5 times higher when compared to the SCL SZO TBCs. The thermal cycling lifetime of DCL SZO/8YSZ TBCs is 660 cycles, which is much longer than that of SCL 8YSZ TBCs (150 cycles). After 660 thermal cycling, only a little spot spallation appears on the surface of the DCL SZO/8YSZ coating. The excellent mechanical properties of the DCL LZ/8YSZ TBCs can be attributed to the underlying 8YSZ coating with the combinational structures, which contributes to improve the toughness and relieve the thermal mismatch between the ceramic layer and the metallic bond coat at high temperature. 相似文献
19.
《Ceramics International》2020,46(13):20652-20663
Rare-earth doped zirconates are promising candidate materials for high-performance thermal barrier coatings (TBCs). The phase and microstructure stability is an important issue for the materials that must be clarified, which is related to the long-term stable work of TBCs at high temperatures. In this work, La2(Zr0.75Ce0.25)2O7 (LCZ) ceramic coatings prepared by atmospheric plasma spraying present a metastable fluorite phase, which can transform into stable pyrochlore under high-temperature annealing. The detailed structure evolution of the ceramic coatings is characterized systematically by SEM, XRD and Raman. The associated thermal properties of LCZ ceramics were also reported. Results show that LCZ ceramic has an ultralow thermal conductivity (0.65 W/m·K, 1200 °C), which is only 1/3 of that of yttria-stabilized zirconia (YSZ). The thermal expansion coefficients of LCZ ceramic increase from 9.68 × 10-6 K-1 to 10.7 × 10-6 K-1 (300 - 1500 °C), which are relatively larger than those of La2Zr2O7. Besides, Long-term sintering demonstrates that LCZ ceramic coating has preferable sintering resistance at 1500 °C, which is desirable for TBC applications. 相似文献