首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pullout resistance is one of the most important factors governing seismic stability of reinforced soil walls. The previous studies on the seismic stability of reinforced soil walls have focused on the axial resistance of the reinforcement against the pullout. However, the kinematics of failure causes the reinforcement to be subjected to the oblique pullout force and bending deformation. Considering the kinematics of failure and bending deformation of the reinforcement, this paper presents a pseudo-static seismic analysis for evaluating the pullout resistance of reinforcements in soil wall subjected to oblique pullout forces. A modified horizontal slice method (HSM) and Pasternak model are used to calculate the required force to maintain the stability of the reinforced soil wall and shear resistance mobilized in the reinforcements, respectively. In addition, this paper studies the effect of various parameters on the pullout resistance of the reinforcements in soil wall subjected to seismic loads. Results of this study are compared with the published data and their differences are analyzed in detail.  相似文献   

2.
Formulation and verification for a force equilibrium-based finite displacement method (FFDM) using test results of reinforced model slopes subjected to increasing pseudo-static seismic forces are reported. The FFDM requires, in addition to force equilibrium for a sliced potential failure mass, a hyperbolic shear stress–displacement constitutive law for the backfill soils, a hyperbolic pull-out force–displacement constitutive law for the reinforcement, and a displacement compatibility requirement for adjacent soil slices. As a result, the mobilized reinforcement force is an analytical output, rather than an empiricism-based input as required in conventional limit equilibrium analyses. Analytical results from the FFDM also indicated that a brittle failure is associated with the lightly reinforced failure surface; a ductile failure is associated with the heavily reinforced failure surface, regardless of the extensibility of reinforcement investigated in the present study. Good agreements between the measured and the computed slope displacements and reinforcement forces in response to increases in pseudo-static seismic forces suggest that the FFDM can be used as an analytical tool for evaluating displacements of reinforced slopes subjected to pseudo-static seismic loads.  相似文献   

3.
Effect of reinforcement force distribution on stability of embankments   总被引:3,自引:0,他引:3  
The effect of reinforcement force distribution on the stability of reinforced embankments is studied. The stability of reinforced embankments is analyzed using the extended generalized method of slices by incorporating the effect of reinforcement. The proposed method is capable of handling features such as a tension crack in the embankment, a varying soil strength profile in the foundation soil and a general slip surface. The method allows the tensile force distribution along the reinforcement to be varied. The stability analysis of reinforced embankments is solved using a spreadsheet optimization tool. The versatility of the proposed method is demonstrated through several cases of reinforced embankments. The results obtained from the proposed method are in good agreement with those obtained from other analytical or numerical methods. The assumed force distribution along the reinforcement appears not to affect the embankment stability in undrained condition. In drained condition, it has some effect on the location of the critical slip surface, but small effect on the factor of safety.  相似文献   

4.
加筋土坡动态稳定性拟静力分析   总被引:8,自引:1,他引:7  
 加筋土工结构被广泛采用的原因不仅是其具有良好的静力性能,且也在于出色的动力稳定性能,现有研究较少考虑竖向地震效应对加筋土坡动态稳定性的影响。基于塑性极限分析上限理论,假定不同的破坏面,同时考虑水平和竖向地震影响并结合不同加筋模式,采用拟静力分析方法推导一定加筋强度条件下的边坡临界高度和一定边坡高度条件下的临界加筋强度计算公式,并对所导公式采用序列二次规划法进行了优化计算,数值计算与分析表明:简单静态和动态条件下,该结果与现有研究成果有较好的一致性,可以证明该方法的正确性;水平和竖向地震、岩土材料强度特性、边坡倾斜度均对加筋土坡的动态稳定性有重要影响,特别当边坡较陡,岩土填筑材料质量较差和地震影响强度较大时,忽视竖向地震影响将会导致设计偏于不安全;最后针对工程实际,提出相应的工程建议。  相似文献   

5.
This paper presents the results of laboratory scale plate load tests on transparent soils reinforced with biaxial polypropylene geogrids. The influence of reinforcement length and number of reinforcement layers on the load-settlement response of the reinforced soil foundation was assessed by varying the reinforcement length and the number of geogrid layers, each spaced at 25% of footing width. The deformations of the reinforcement layers and soil under strip loading were examined with the aid of laser transmitters (to illuminate the geogrid reinforcement) and digital camera. A two-dimensional finite difference program was used to study the fracture of geogrid under strip loading considering the geometry of the model tests. The bearing capacity and stiffness of the reinforced soil foundation has increased with the increase in the reinforcement length and number of reinforcement layers, but the increase is more prominent by increasing number of reinforcement layers. The results from the physical and numerical modelling on reinforced soil foundation reveal that fracture of geogrid could initiate in the bottom layer of reinforcement and progress to subsequent upper layers. The displacement and stress contours along with the mobilized tensile force distribution obtained from the numerical simulations have complimented the observations made from the experiments.  相似文献   

6.
This paper presents a numerical study on the load-bearing performance of reinforced slopes under footing load using a finite element limit analysis (FELA) method where a non-associated flow rule is assumed in the analysis. The method was validated against results from full-scale model tests and a limit equilibrium (LE) analytical method. A series of parametric analyses was subsequently carried out to examine the influences that the soil dilation angle, footing location, and reinforcement design (i.e. length, tensile strength, and vertical spacing) could have on the load-bearing performance of reinforced slopes. Results indicate that dilation angle has a significant influence on the predicted magnitudes of bearing capacity, slope deformation, and mobilized reinforcement load. The predicted values of bearing capacity using the FELA are smaller than those from the Meyerhof's analytical method for unreinforced semi-infinite foundation, especially for larger friction angle values. Additionally, the ultimate bearing capacity of the slope and its corresponding horizontal deformation increase with the reinforcement tensile strength. Finally, the slip planes under the applied footing load are found to be y-shaped and primarily occur in the upper half of the slope.  相似文献   

7.
土工合成材料加筋边坡稳定性分析中的模量因素   总被引:6,自引:1,他引:6       下载免费PDF全文
本文应用有限元分析方法模拟筋材与土的相互作用,分析了加筋边坡的稳定性,研究了加筋土中筋材的拉伸模量ER与土体弹性模量ES对边坡稳定的影响。分析表明,通过合理选择筋材拉伸模量ER和土体弹性模量ES的搭配,可以提高加筋效果,增强加筋边坡的稳定性。  相似文献   

8.
This paper examines the stability of geotextile-reinforced slopes when subjected to a vertical load applied to a strip footing positioned close to the slope crest. Vertical spacing between geotextile reinforcement was varied while maintaining a constant slope angle, load position, soil density and geotextile type. Small-scale physical tests were conducted using a large beam centrifuge to simulate field prototype conditions. After the model was accelerated to 40g, a load was applied to the strip footing until slope failure occurred. Digital image analysis was performed, using photographs taken in-flight, to obtain slope displacements and strain distribution along the reinforcement layers at different loading pressures during the test and at failure. Stability analysis was also conducted and compared with centrifuge model test results. The vertical spacing between reinforcement layers has a significant impact on the stability of a reinforced slope when subjected to a vertical load. Less vertical distance between reinforcement layers allows the slope to tolerate much greater loads than layers spaced further apart. Distributions of peak strains in reinforcement layers due to the strip footing placed on the surface of the reinforced slope were found to extend up to mid-height of the slope and thereafter they were found to be negligible. Stability analysis of the centrifuge models was found to be consistent with the observed performance of geotextile-reinforced slopes subjected to loading applied to a strip footing near the crest.  相似文献   

9.
This paper presents a procedure for assessing the reinforcement force of geosynthetics required for maintaining dynamic stability of a steep soil slope. Such a procedure is achieved with the use of the discretization technique and kinematic analysis of plasticity theory, i.e. discretization-based kinematic analysis. The discretization technique allows discretization of the analyzed slope into various components and generation of a kinematically admissible failure mechanism based on an associated flow rule. Accordingly, variations in soil properties including soil cohesion, internal friction angle and unit weight are accounted for with ease, while the conventional kinematic analysis fails to consider the changes in soil properties. The spatial–temporal effects of dynamic accelerations represented by primary and shear seismic waves are considered using the pseudo-dynamic approach. In the presence of geosynthetic reinforcement, tensile failure is discussed providing that the geosynthetics are installed with sufficient length. Equating the total rates of work done by external forces to the internal rates of work yields the upper bound solution of required reinforcement force, below which slopes fail. The reinforcement force is sought by optimizing the objective function with regard to independent variables, and presented in a normalized form. Pseudo-static analysis is a special case and hence readily transformed from pseudo-dynamic analysis. Comparisons of the pseudo-static/dynamic solutions calculated in this study are highlighted. Although the pseudo-static approach yields a conservative solution, its ability to give a reasonable result is substantiated for steep slopes. In order to provide a more meaningful solution to a stability analysis, the pseudo-dynamic approach is recommended due to considerations of spatial–temporal effect of earthquake input.  相似文献   

10.
Understanding the stress regime that develops in the vicinity of reinforcements in reinforced soil masses may prove crucial to understanding, quantifying, and modeling the behavior of a reinforced soil structures. This paper presents analyses conducted to describe the evolution of stress and strain fields in a reinforced soil unit cell, which occur as shear stresses are induced at the soil-reinforcement interface. The analyses were carried out based on thorough measurements obtained when conducting soil-reinforcement interaction tests using a new large-scale device developed to specifically assess geosynthetic-reinforced soil behavior considering varying reinforcement vertical spacings. These experiments involved testing a geosynthetic-reinforced mass with three reinforcement layers: an actively tensioned layer and two passively tensioned neighboring layers. Shear stresses from the actively tensioned reinforcement were conveyed to the passively tensioned reinforcement layers through the intermediate soil medium. The experimental measurements considered in the analyses presented herein include tensile strains developed in the reinforcement layers and the displacement field of soil particles adjacent to the reinforcement layers. The analyses provided insights into the lateral confining effect of geosynthetic reinforcements on reinforced soils. It was concluded that the change in the lateral earth pressure increases with increasing reinforcement tensile strain and reinforcement vertical spacing, and it decreases with increasing vertical stress.  相似文献   

11.
加筋高边坡的稳定分析   总被引:1,自引:0,他引:1  
采用强度折减法对两个高度分别为 60 m 和 40 m 的土工格栅加筋高边坡的设计断面进行稳定分析,综合考虑塑性区贯通、特征点位移突变、计算不收敛,以及土工格栅的容许抗拉强度等确定相应的安全系数。计算表明采用不同的破坏标准,强度折减法会得到不同的安全系数;如果筋材强度始终得到保证,单纯由土材料的强度损失诱发边坡失稳,这种情况对应的安全系数是比较高的。考虑筋材强度,边坡会在较小的折减系数下因为筋材强度不足而失稳。有限元法能够得到不同情况下各层筋材的受力情况,可以据此进行加筋力的分配,这是极限平衡法所不具备的。  相似文献   

12.
基于加筋材料的拉拔试验结果和极限平衡理论,针对具体边坡工程进行了不同加筋方案的计算与分析,对比了计算模型和设计方法的适用性,给出了满足边坡稳定条件的最佳设计方案。计算结果表明:采用改进瑞典法或荷兰法的计算结果相近且较原瑞典法有明显的提高,更能体现加筋效果;地震效应和地下水对加筋结构有较大影响;水利法应用于稳定地基上加筋边坡目的性强,能获得满足稳定性条件的合理布筋量;当地下水位较高时,筋材宜通铺。双层加筋效果较单层加筋有明显提高,但并非后者的简单叠加。单层加筋时,铺设位置对于边坡稳定性的影响有限,若铺设于坡身更能减少布筋量,降低造价。对比分析还表明,无论采用何种加筋方式,加筋前后的最危险滑弧位置均会发生改变,后者会向边坡中心和地基深处发展,对于提高其稳定性有明显作用。  相似文献   

13.
This paper presents a numerical study of maximum reinforcement tensile forces for geosynthetic reinforced soil (GRS) bridge abutments. The backfill soil was characterized using a nonlinear elasto-plastic constitutive model that incorporates a hyperbolic stress-strain relationship with strain softening behavior and the Mohr-Coulomb failure criterion. The geogrid reinforcement was characterized using a hyperbolic load-strain-time constitutive model. The GRS bridge abutments were numerically constructed in stages, including soil compaction effects, and then loaded in stages to the service load condition (i.e., applied vertical stress?=?200?kPa) and finally to the failure condition (i.e., vertical strain?=?5%). A parametric study was conducted to investigate the effects of geogrid reinforcement, backfill soil, and abutment geometry on reinforcement tensile forces at the service load condition and failure condition. Results indicate that reinforcement vertical spacing and backfill soil friction angle have the most significant effects on magnitudes of maximum tensile forces at the service load condition. The locus of maximum tensile forces at the failure condition was found to be Y-shaped. Geogrid reinforcement parameters have little effect on the Y-shaped locus of the maximum tensile forces when no secondary reinforcement layers are included, backfill soil shear strength parameters have moderate effects, and abutment geometry parameters have significant effects.  相似文献   

14.
Conventional design of geosynthetic-reinforced soil structures is divided into two categories, walls and slopes, based on the batter of its facing system. Internal stability, characterized as sufficient reinforcement anchoring and strength, is performed using earth pressure-based design criteria for reinforced walls while reinforced slopes are founded on limit equilibrium (LE) slope stability analyses. LE analyses are also used to assess the global or compound stability of both types of structures, accounting for the geometry of the reinforced, retained and foundation soils. The application of LE-based methods typically results in determination of a slip surface corresponding to the lowest attained Safety Factor (SF), known as the Factor of Safety (Fs); however, it yields little information about reinforcement loading or connection load. In this study, use of the analyzed spatial distribution of SF known as a Safety Map, is modified to attain a prescribed constant Fs at any location in the reinforced soil mass. This modified framework, implemented through an iterative, top-down procedure of LE slope stability analyses originating from the crest of a reinforced structure and exiting at progressively lower elevations on the facing, enables the determination of a Tension Map that illustrates the required distribution of reinforcement tension to attain a prescribed limit state of equilibrium. This tension map is directly constrained by a pullout capacity envelope at both the rear and front of each reinforcement layer, providing a unified, LE-based approach towards assessing an optimal selection of mutually dependent strength and layout of the reinforcement. To illustrate the utility of the Limit State framework, a series of instructive examples are presented. The results demonstrate the effects of facing elements, closely-spaced reinforcements, secondary reinforcement layers, and is compared to conventional design approaches.  相似文献   

15.
软基边坡处理中常采用水泥土搅拌桩复合地基。但受水平推力作用时桩体存在弯折效应且施工时易出现劣质层。本文采用水泥土连拱抗滑墙加固软基边坡,采用数值分析的方法建立三维模型,分析加固前后边坡的水平侧移、沉降、应力、边坡稳定性的变化,并深入的分析了连拱抗滑墙抗滑机理。研究表明连拱抗滑墙加固边坡技术具有性能可靠、施工方便的优势,在软基边坡加固领域具有广阔的应用前景。  相似文献   

16.
三维弹塑性有限元计算中的不平衡力研究   总被引:14,自引:0,他引:14       下载免费PDF全文
研究了弹塑性计算中不平衡力的性质 ,揭示了它和加固力、结构稳定性的密切关系。研究表明 ,对任一迭代步 ,只要施加一个反向不平衡力 (加固力 ) ,结构就是稳定的。可以用总余能范数来衡量弹性试应力场和调整后应力场的偏差 ,弹塑性本构关系要求该总余能范数取最小值 ;不平衡力就是两应力场差值在结点上的集中体现 ,故在总余能范数的意义上 ,按弹塑性本构关系确定的不平衡力或加固力是最小的。弹塑性计算确定的加固力和真解相比偏于安全。拱坝计算实例表明 ,不平衡力分析对分析结构稳定性、指导加固设计有益。  相似文献   

17.
 为研究不同支护模式下黄土高边坡的开挖变形特征和支护结构性状,以观音堂隧道进口明洞段黄土高边坡为实例,采用土工离心机,开展黄土高边坡在无支护、全断面土钉支护、上部土钉下部预加固桩复合支护模式下的离心模型试验,试验结果表明:(1) 桩–钉复合支护体系能够显著提高黄土高边坡的稳定性,坡体上部土钉的布设有效地调动了边坡更大范围内土体变形的调整,使得边坡土体的潜在滑移面向坡体内侧转移,将潜在滑移面的剪出口位置限制在预加固桩桩顶以下,而下部预加固桩的布设则有效地承担上部滑体的推力作用,保证坡体在开挖过程中的稳定性。(2) 全断面土钉支护在一定程度上起到了加固边坡土体的作用,但由于土钉支护范围有限,当潜在滑移面深度超出土钉加固范围后,边坡土体发生更大范围内的失稳现象,加剧坡体的破坏。(3) 对于黄土高边坡的加固,桩钉复合支护要优于全断面土钉支护。  相似文献   

18.
土钉加固黏性土坡动力离心模型试验研究   总被引:1,自引:0,他引:1  
 很多滑坡是由地震引发的,为了防止或减轻地震造成的边坡灾害,目前在边坡的加固治理方面已经发展并形成一些较好的方法,而土钉是边坡抗震加固的一种简便有效的方法。采用动力离心模型试验方法,再现地震条件下土钉加固黏性土坡和素土坡的响应;测量了试验过程中边坡的位移场和加速度响应的变化过程。基于试验结果,通过对比素土坡和土钉加固土坡的动力响应,探讨土钉加固土坡的变形规律和加固机制。试验结果表明,地震过程中土坡产生不可恢复的累积变形,其大小与输入的地震加速度峰值有关。通过比较土钉加固土坡和素土坡的位移分布,研究土钉加固土坡的机制。引入土单元应变进行分析,结果表明,土钉加固措施能显著地改变边坡的位移场分布,限制土坡的剪切变形,避免滑裂面的产生,从而提高了边坡的稳定性。  相似文献   

19.
通过分析边坡坡体在锚固预应力作用下的受力特点,认为应将边坡稳定性计算分为锚固体与坡体的耦合和解耦2个阶段进行,并分析了解耦阶段、锚固力的组成及其作用特点。分析结果表明,解耦阶段的锚固力大小与边坡不稳定体沿潜在的弱面位移有直接关系。结合预应力锚索框架加固边坡的实际特点,进行锚索拉力及梁底土压力的长期观测,验证解耦阶段的实际存在。将锚固体与坡体解耦阶段边坡所受的锚固力分为原锚索预应力的剩余值和岩土体与灌浆体间的剪切阻力,并假设边坡土体均匀、锚固边坡体系是一个平面应变问题,从而导出以岩土体沿潜在滑面位移为基础的解耦阶段边坡稳定性计算方法。该方法考虑边坡和锚索的实际工作状态,故计算结果较以往算法更切合实际,并给出实际算例加以验证。  相似文献   

20.
采用有限元法针计算不同桩长的埋入式抗滑桩在设桩位置的滑坡总推力,计算桩身所受推力分布形式、推力大小和桩顶至坡面的滑坡推力分布形式、大小,计算桩长变化时滑坡体加固后的稳定性。计算表明:桩长变化,设桩位置的总滑坡推力大体相等。桩长度变短,桩身的滑坡推力、桩的最大弯距与最大剪力降低。增加桩的锚固段的长度可以降低桩身的最大剪力。综合桩长变化滑坡体加固后的稳定性、滑坡推力和桩身内力的变化规律,发现沉埋桩既可使滑坡体达到足够的稳定性,且有很大的经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号