共查询到20条相似文献,搜索用时 15 毫秒
1.
基于支持向量机的Internet流量分类研究 总被引:12,自引:0,他引:12
准确的网络流量分类是众多网络研究工作的基础,也一直是网络测量领域的研究热点.近年来,利用机器学习方法处理流量分类问题成为了该领域一个新兴的研究方向.在目前研究中应用较多的是朴素贝叶斯(naive Bayes,NB)及其改进算法.这些方法具有实现简单、分类高效的特点.但该方法过分依赖于样本空间的分布,具有内在的不稳定性.因此,提出一种基于支持向量机(sulbport vector machine,SVM)的流量分类方法.该方法利用非线性变换和结构风险最小化(structural risk minimization,SRM)原则将流量分类问题转化为二次寻优问题,具有良好的分类准确率和稳定性.在理论分析的基础上,通过在实际网络流集合上与朴素贝叶斯算法的对比实验,可以看出使用支持向量机方法处理流量分类问题,具有以下3个优势:1)网络流属性不必满足条件独立假设,无须进行属性过滤;2)能够在先验知识相对不足的情况下,仍保持较高的分类准确率;3)不依赖于样本空间的分布,具有较好的分类稳定性. 相似文献
2.
基于支持向量机方法的车型分类 总被引:1,自引:0,他引:1
车型分类是交通流检测系统的子功能,也是智能交通系统(ITS)中的重要环节。支持向量机方法被看作是对传统学习分类方法的一个好的替代,特别在小样本、非线性情况下,具有较好的泛化性能。论文基于视频检测技术,采用支持向量机方法对车型分类进行了研究。实验表明,支持向量机方法能获得比神经网络方法更好的车型分类性能。 相似文献
3.
Daewon Lee Jaewook Lee 《Neural Networks, IEEE Transactions on》2007,18(2):578-583
A novel learning algorithm for semisupervised classification is proposed. The proposed method first constructs a support function that estimates a support of a data distribution using both labeled and unlabeled data. Then, it partitions a whole data space into a small number of disjoint regions with the aid of a dynamical system. Finally, it labels the decomposed regions utilizing the labeled data and the cluster structure described by the constructed support function. Simulation results show the effectiveness of the proposed method to label out-of-sample unlabeled test data as well as in-sample unlabeled data 相似文献
4.
基于支持向量机的软测量建模 总被引:1,自引:0,他引:1
周志成 《自动化技术与应用》2005,24(8):9-11
本文主要讨论支持向量机方法在聚酯工业过程软测量建模中的应用,分析各类支持向量机算法、参数及核函数的选择对建模精度的影响。 相似文献
5.
提出一种基于支持向量机学习的模糊分类束纯模型.通过将支持向量机映射成等价的模糊分类系统,支持向量机的稀疏性表示等特性使得相应的模糊分类系统避免了“维数灾难”问题,并具有良好的泛化能力.另一方面,模糊系统的一些理论和应用成果也可用来进一步改善分类系统的性能.本文根据模糊集合的贴近度概念对模糊系统的语言变量进行约简,合并冗余的和不一致的模糊规则,然后采用粒子群优化方法改善模糊分类系统性能.该方法增强了系统的泛化能力,并可以理解为解决支持向量机中难以确定的系统参数问题的一种辅助方法.实验结果表明了该方法的可行性和有效性. 相似文献
6.
SVM在解决小样本、非线性及高维模式识别问题中表现出诸多特有的优势,结合模式分类,研究SVM的基本思想、训练算法及其应用,讨论海量样本数据的改进训练算法以及多类别分类方法等方面. 相似文献
7.
分类预测是数据挖掘、机器学习和模式识别等很多领域共同关注的问题,已经存在了许多有效的分类算法,但这些算法还不能解决所有的问题。支持向量机作为一种新的分类预测工具,能根据有限样本信息在模型的复杂性和学习能力间取得平衡,并能获得更好的泛化能力。SMO算法是支持向量机中使用最多的算法,它体现了支持向量机的优点,同时也能处理大规模训练集。 相似文献
8.
基于K近邻的支持向量机分类方法 总被引:3,自引:0,他引:3
针对支持向量机对噪声和孤立点非常敏感,以及对大规模且交错严重的训练集支持向量个数多,分类速度慢和精度低等问题,基于KNN方法提出KNN-SVM分类器.首先在特征空间中,根据每个样本K个近邻中同类别样本数目的多少来删减样本集,然后对新样本集进行SVM训练;又证明了当取高斯核函数或指数核函数时,上述删减方法可简化为在原空间中进行.该方法减少了由噪声和孤立点以及一些对分类面贡献不大的样本所带给训练器的负担,减少了支持向量的个数,从而与SVM相比,加快了训练和测试速度,提高了分类精度.仿真实验表明KNN-SVM具有上述优势,而且比NN-SVM更能合理地删减样本集,达到更高的分类精度. 相似文献
9.
基于支持向量机的手写体数字识别 总被引:1,自引:0,他引:1
提出了一种基于支持向量机的手写体数字识别系统。支持向量机方法,突破了传统模式识别方法的局限,使得基于支持向量机的分类器具有较好的推广能力。文中重点阐述了支持向量机的基本原理和集成在该系统中的重要的处理模块,实验结果表明该系统具有较高的识别率和较强的实用性。 相似文献
10.
一种基于层次化支持向量机的语种识别方法 总被引:2,自引:0,他引:2
基于广义线性区分性序列核的支持向量机方法在语种识别中了得到了广泛应用.本文此基础上,进一步提出了一种层次化的SVM方法,通过将训练语音切分成不同时长的语音段集合.利用长时语音段训练得到的模型对短时语音段集合进行数据选择.同时借鉴互训练的思想,采用互补的特征参数训练SVM模型,并对不同时长、特征的系统识别结果加以融合,有效提高了系统性能.在NIST 2003语种测试中30秒时长的测试结果表明,本文所提方法有效的提升了语种识别的性能,等错误率(EER)从6.3降到了4.5%. 相似文献
11.
12.
随着客户关系管理系统的不断发展和应用,使用先进的算法进行客户分析变得越来越重要.尤其是象银行这种以客户为导向的行业,客户分析是十分必要的.当前,支持向量机方法作为一种统计学习理论的分类方法已经发展的哪比较成熟而且成功应用到了很多领域.文章解决的主要问题是对银行的客户数据根据其属性对客户进行分类,为银行的客户关系管理系统提供一种可靠的分类方法.文中主要介绍了银行的客户分类学习的过程和结果,如,客户数据清洗,数据预处理,SVM进行数据分类,多类分类处理,客户属性选择等问题. 相似文献
13.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法,再通过对不同方法的支持向量机分类算法的比较,进行一个总体的描述和概括。并对未来发展发向做了一个预测。 相似文献
14.
利用支持向量机识别汽车颜色 总被引:3,自引:0,他引:3
大类别数分类时支持向量机(SVM)数量较多,文中通过类别合并和特征空间分解,结合决策树判别方法.对SVM数量进行优化,提出了一种基于优化SVM的汽车颜色识别方法.该方法与最近邻分类方法相比,无论是在速度上还是识别正确率上都得到了提高.实验结果表明,该方法是一种快速且正确率较高的多类别分类方法,可以满足实时识别的要求. 相似文献
15.
16.
基于SVM的遥感影像的分类 总被引:7,自引:1,他引:7
遥感图像的分类方法包括统计模式识别、句法模式识别、以及神经网络、遗传算法、模拟退火算法等等。本文分析了统计模式识别方法的优缺点,提出了使用SVM的方法进行遥感图像分类的设想,通过实验证明该方法是有效和稳健的。 相似文献
17.
18.
该文是对当前支持向量机在文本分类上的应用进行研究。先介绍了支持向量机的基本方法.再通过对不同方法的支持向量札分类算法的比较,进行一个总体酌描述和概括开对未来发展发向做了一个预测。 相似文献
19.
基于支持向量机的纹理图像分类算法 总被引:1,自引:0,他引:1
研究纹理图像的分类问题,纹理特征提取和分类器设计是决定分类正确率高低的关键。由于库存图像较多,且质量受到噪声影响,使图像特征提取比较困难。针对传统特征提取和分类算法分类正确率不高的难题,提出一种基于支持向量机的纹理图像分类算法。首先采用Gabor滤波器对纹理特征进行提取,采用主成分分析对提取后的特征进行选择,最后采用支持向量机进行纹理图像的分类。采用Brodatz纹理库进行测试实验,实验结果表明,支持向量机分类算法提高了纹理图像的分类正确率,降低了误分率和拒分率,且分类速度加快,适用于更为复杂的纹理分类,为图像提取提供了参考。 相似文献
20.
电子技术和成像技术的发展导致数字图像迅速增长,依靠先进的技术识别和分类海量的图像数据正是当前各行业急需解决的问题.为此提出了一种基于模糊支持向量机的图像分类方法,通过定义模糊隶属度函数弥补了传统支持向量机在多分类问题中的不足,解决了图像分类中的语义模糊问题.使用Internet上的六类自然图像进行测试,实验结果表明,与传统的支持向量机方法相比,分类性能显著提高. 相似文献