首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
Molybdenum carbide catalysts for water–gas shift (WGS) reaction were investigated to develop an alternate commercial LTS (Cu-Zn/Al2O3) catalyst for an onboard gasoline fuel processor. The catalysts were prepared by a temperature-programmed method and were characterized by N2 physisorption, CO chemisorption, XRD and XPS. It was found that the Mo2C catalyst showed higher activity and stability than the commercial LTS catalyst, even though both catalysts were deactivated during the thermal cycling runs. The optimum carburization temperature for preparing Mo2C was in the range of 640–650 °C. It was found that the deactivation of the Mo2C catalyst was caused by the transition of Moδ+ (IV < δ+ < VI, MoOxCy), MoIV and Mo2C on the surface of the Mo2C catalyst to MoVI (MoO3) with the reaction of H2O in the reactant. It was identified that molybdenum carbide catalyst is an attractive candidate for the alternate Cu-Zn/Al2O3 catalyst for automotive applications.  相似文献   

2.
The compounds in Na2O‐MoO3 system were prepared by the solid‐state reaction route. The phase composition, crystal structures, microstructures, and microwave dielectric properties of the compounds have been investigated. This series of compounds can be sintered well at ultra‐low temperatures of 505°C–660°C. The sintered samples exhibit good microwave dielectric properties, with the relative permittivities (εr) of 4.1–12.9, the Q × f values of 19900–62400 GHz, and the τf values of ?115 ppm/°C to ?57 ppm/°C. Among the eight compounds in this binary system, three kinds of single‐phase ceramics, namely Na2MoO4, Na2Mo2O7 and Na6Mo11O36 were formed. Furthermore, the relationship between the structure and the microwave dielectric properties in this system has been discussed. The average NaI‐O and MoVI‐O bond valences have an influence on the sintering temperatures in Na2O‐MoO3 system. The large valence deviations of Na and Mo lead to a large temperature coefficient of resonant frequency. The X‐ray diffraction and backscattered electron image results show that Na2MoO4 doesn't react with Ag and Al at 660°C. Also, Na2Mo2O7 has a chemical compatibility with Al at 575°C.  相似文献   

3.
The aim of this work is to develop a new hydroisomerization catalyst based on molybdenum carbides that is resistant to the influence of sulfur compounds and applicable for the synthesis of low-pour-point diesel fuels that are similar in parameters to the fuel synthesized using platinum-containing catalysts. In the first part of the work, supports with different porous structures and acidities (Beta, ZSM-5, ZSM-12, and SAPO-31) are synthesized and studied. In the second part of the work, bifunctional catalysts prepared by modifying these supports with nanosized molybdenum carbides are studied. All samples contain the same amount of Mo2C (10% in terms of the equivalent amount of MoO3). The catalysts are tested using a model isomerization reaction of n-decane. The catalyst based on silicoaluminophosphate ATO (SAPO-31) proves to be the most effective one. In order to optimize its composition, larger batches of samples with different Mo2C contents (5, 7 and 10% in terms of the equivalent amount of MoO3) are prepared. The catalytic properties are studied using the hydroisomerization of actual diesel fractions. The optimum content of Mo2C (7 wt %) in the bifunctional catalyst is determined.  相似文献   

4.
The dry reforming of methane at elevated pressure over supported molybdenum carbide catalysts, prepared from oxide precursors using ethane TPR, has been studied. The relative stability of the catalysts is Mo2C/Al2O3>Mo2C/ZrO2>Mo2C/SiO2>Mo2C/TiO2, and calcination of the oxide precursor for short periods was found to be beneficial to the catalyst stability. Although the support appears to play no beneficial role in the methane dry reforming reaction, the alumina-supported material was stable for long periods of time; this may be important for the production of pelletised industrial catalysts. The evidence suggests that the differences in the stabilities may be due to interaction at the precursor stage between MoO3 and the support, while catalyst deactivation is due to oxidation of the carbide to MoO2, which is inactive for methane dry reforming.  相似文献   

5.
In reforming of CH4 with CO2 over molybdenum carbide catalysts, the catalytic performance of unsupported hexagonal Mo2C prepared by direct carburization of MoO3 was considerably different from a similar composition, cubic MoC1−x (x≈0.5), prepared through nitriding before carburization. The conversion levels over MoC1−x were substantially higher than those over Mo2C, although the turnover frequencies were lower. X‐ray diffraction analysis indicated that Mo2C deactivated by conversion to MoO2 during the reaction, but the MoC1−x was transformed to the hexagonal Mo2C and remained stable. The activity of Mo2C dispersed on various supports for the CH4–CO2 reaction was also investigated. The performance depended strongly on the property of supports, with the ZrO2‐supported Mo2C catalyst exhibiting the highest activity and durability for this reaction. Moreover, deactivation of Mo2C/ZrO2 at ambient pressure was suppressed by decreasing the loading amount of Mo2C. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
A simple method was developed to synthesize MoO2 and Mo2C nanoparticles via controlling nucleation and growth in carbothermic reduction of commercial MoO3 with carbon black. It was found that the appropriate C/MoO3 molar ratio for preparation of Mo2C was 2.8, and the carbothermic reduction process followed the sequence: MoO3 → transport phase (TP) → MoO2 → Mo2C. It was revealed that the most crucial issues for controlling number of produced particles of product were migration of Mo source and aid of nucleating agent, which can be achieved by using MoO3 and carbon black as starting materials. MoO2 nanosheets with the thickness of 12 nm and lateral size of 60 nm, as well as Mo2C nanoparticles with particle size of 30 nm were prepared via reduction of MoO3 with carbon black. However, MoO2 and Mo2C produced via reducing MoO3 by other kinds of carbon sources (activated carbon, graphite) or gas reductants (10% CH4/H2, CO) had much larger particle sizes of a few micrometers, which were tens of times than those using MoO3 and carbon black, due to the too small amount of formed nuclei. The effects of C/MoO3 molar ratio (0.5-2.8), molybdenum sources and carbon sources on the reaction mechanisms were investigated in detail.  相似文献   

7.
Two series of molybdenum carbides are prepared from MoO3 by temperature programmed reduction (TPR), differing in feed gas composition (20 and 40% CH4/H2). The heating ramp consists of two steps, one from ambient temperature to 973 K, at a rate of 10 K/min; the second from 973 K up to the final temperature (1023, 1073, 1123, 1173 K), at a rate of 0.5 K/min. The Mo2C (hcp) phase is identified for the series prepared with 20% CH4/H2 at different temperatures, with surface areas between 20 and 27 m2/g. Also found is a mix of the MoC and Mo2C (hcp) phases for the series prepared with 40% CH4/H2 at temperatures above 1023 K, with surface areas between 9 and 19 m2/g. Both series of catalysts reach 100% conversion of cyclohexene in 5 h or less, with those catalysts prepared with a 40% CH4/H2 gas mix reaching maximum conversion in the least time. Catalysts are compared to a commercial molybdenum carbide reagent as a reference.  相似文献   

8.
Procedures for the synthesis of massive molybdenum carbide by the mechanical activation of a mixture of MoO3, commercial carbon, and Zn in air and the synthesis of the supported carbide-containing catalyst Mo2C/C by the mechanical activation of commercial carbon impregnated with a 16% aqueous solution of ammonium paramolybdate in an inert atmosphere were developed for the first time. With the use of a set of physicochemical methods, the metal contents, particle sizes, specific surface areas, and phase compositions of the mechanically activated composites were determined. The structure of the carbide-containing supported catalyst was studied by electron microscopy, and its acidic properties were studied by the temperature-programmed desorption of ammonia; catalytic tests in the model reactions of dibenzothiophene (DBT) and alkane aromatization were performed. It was found that the Mo2C/C catalyst exhibited high activity in these reactions: the conversion of DBT at a contact time of 3–6 h was 80–85%. The conversion of n-heptane at a contact time of 2 h was 31.2%, and 100% toluene was the reaction product. An increase in the contact time to 6 h led to a decrease in the conversion of n-heptane to 1.3%, and to 47% C6-C7 cycloalkanes were present in the reaction products. The results of this work are indicative of the high catalytic activity of the Mo2C/C catalyst obtained by mechanical activation.  相似文献   

9.
A novel and active Cu–MoO2 catalyst was synthesized by partial reduction of a precursor CuMoO4 mixed-metal oxide with CO or H2 at 200–250 °C. The phase transformations of Cu–MoO2 during H2 reduction and the water–gas shift reaction could be followed by in situ time resolved XRD techniques. During the reduction process the diffraction pattern of the CuMoO4 collapsed and the copper metal lines were observed on an amorphous material background that was assigned to molybdenum oxides. During the first pass of water–gas shift (WGS) reaction, diffraction lines for Cu6Mo5O18 and MoO2 appeared around 350 °C and Cu6Mo5O18 was further transformed to Cu/MoO2 at higher temperature. During subsequent passes, significant WGS catalytic activity was observed with relatively stable plateaus in product formation around 350, 400 and 500 °C. The interfacial interactions between Cu clusters and MoO2 increased the water–gas shift catalytic activities at 350 and 400 °C.  相似文献   

10.
《Ceramics International》2023,49(20):33135-33146
In the work, the temperature-programmed reaction (TPR) between hexagonal-shaped h-MoO3 and high-purity CO under different heating rates was investigated in order to prepare Mo2C. Various technologies such as TG-DTA-DTG, XRD, FESEM, FT-IR and Raman spectrum as well as the thermodynamic calculation were adopted to analyze the experimental data. The results showed that the physically adsorbed water on the sample surface, the residual ammonium and coordinated water in the internal structure of h-MoO3 were successively released as the temperature increased, and then α-MoO3 and Mo4O11 were formed when the temperature arrived at around 791 K. Upon further increasing the temperature, the reduction process occurred and MoO2 will be generated. Thereafter, the carburization reaction was taken place and the subsequent reaction pathways were significantly different at lower and higher heating rates: at lower heating rates (8 and 12 K/min), the carburization process of MoO2 to Mo2C followed MoO2→MoO2+Mo2C→Mo2C + Mo→Mo2C; while at higher heating rates (16 and 20 K/min), the reaction pathways followed MoO2→MoO2+Mo2C→MoO2+Mo2C + Mo + MoOxCy→Mo→Mo2C, single-phase metallic Mo can be generated. The work also discovered that the as-prepared Mo2C always kept the same platelet-shaped morphology as that of the newly-formed MoO2; while due to the removal of oxygen and the decrease of molar volume during the transformation process, the as-prepared Mo2C exhibited a rougher and more porous morphological structure.  相似文献   

11.
Lei Ni  Ling-Ping Zhou  Kiyoto Matsuishi 《Carbon》2009,47(13):3054-5387
The role of catalyst components in catalysts containing molybdenum, Mo/M/MgO (MNi, Co, and Fe), as well as Mo-free catalysts, M/MgO (MNi, Co, and Fe), for carbon nanotube (CNT) synthesis have been investigated by TEM, XRD, and Raman spectroscopy. CNT synthesis by the catalytic decomposition of CH4 over M/MgO catalysts can proceed at reaction temperatures higher than the decomposition temperature of the metal carbides (Ni3C, Co2C, and Fe3C), which indicates that carbon in the CNT originates from the graphitic carbon formed on the catalyst surface by the decomposition of metal carbides. For all catalysts containing Mo, thin CNT formation starts at an identical temperature of 923 K, corresponding to the decomposition temperature of MoC1−x into Mo2C. The significant effect of the addition of Mo is concerned with the formation of Mo2C in a catalyst particle during CNT synthesis at high reaction temperatures. The presence of a stable Mo2C phase leads to the formation of thin CNT with better crystallinity at high reaction temperatures. The role of Ni, Co, and Fe in the Mo/M/MgO catalysts is ascribed to the dissociation of CH4.  相似文献   

12.
The kinetics of vapour phase hydrogenolysis of thiophene over a series of unsupported and γ-alumina supported nickel-molybdenum catalysts were studied at atmospheric pressure using a fixed bed integral microreactor. A kinetic expression describing the effects of temperature and space velocity was experimentally verified. The hydrogenolysis of thiophene was found to be 0.8th order with respect to thiophene and 0.8Sth order with respect to hydrogen. The activation energy of the reaction over nickel-molybdenum (NiO:MoO3 weight ratio 30:70) catalyst was found to be 19.23 kJ mol−1 in the temperature range 250–350°C, while above this temperature the reaction was affected by adsorbed thiophenic sulphur. X-ray and infrared analyses of the catalysts indicated that MoO3 (Mo6+, a main component), which after pretreatment forms MoS2 or MoS2+MoO2, requires the incorporation of a specific concentration of nickel (Ni:Mo ca 0.5) in the form of α-NiMoO4 for maximum hydrodesulphurisation activity.  相似文献   

13.
Molybdenum hemicarbide (Mo2C), which is widely applied in steel and metal ceramics as well as catalysts, was successfully synthesized by using a simple method of reducing MoO2 powders by CO. It was found that the final reduction product was all Mo2C under both isothermal and nonisothermal conditions. However, the reduction mechanisms were significantly different at lower and higher temperatures: at lower temperatures (1070 to 1342 K), reduction of MoO2 to Mo2C followed a one‐step reaction (simultaneous reduction and carburization), while at higher temperatures (1423 to 1485 K), MoO2 was first reduced to metallic Mo, and then Mo was carburized to Mo2C. Mo2C particles obtained at higher temperatures contained micrometer‐sized surface features which formed during the MoO2 to Mo reduction step.  相似文献   

14.
A series of Mo2C and Mo2N supported catalysts have been synthesized using a parallel synthesis and high throughput screening approach. The high surface area Mo2C and Mo2N supports were prepared using temperature programmed reaction methods. Metals including Co, Cu, Fe, Ni, Pd, Pt, Ru, and Sn were impregnated onto these supports using a synthesis system. Methanol steam reforming (MSR) activities and selectivities for these materials were evaluated using a high throughput-screening reactor. The support type, metal type and concentration, and metal precursor type influenced the activity and selectivity patterns. Of more than 400 materials that were synthesized and evaluated, the Pt/Mo2N, Pt–Ni/Mo2N, Pt–Fe/Mo2N, and Pd–Fe/Mo2C catalysts possessed the highest activities. Some of these formulations were more active than a commercial Cu/Zn/Al2O3 catalyst, however, the CO2 selectivities were typically lower. At similar conversions, materials that were highly active were not selective while the less active materials were very selective. Many of the highly active catalysts included noble metals while the highly selective catalysts included base metals.  相似文献   

15.
Silica-supported molybdenum (1.6 and 5.0 wt%) and molybdenum (5 wt%)-sodium (0.4 wt%) catalysts have been characterized by laser Raman spectroscopy (LRS), time differential perturbed angular correlation (TDPAC), temperature-programmed reduction (TPR) and X-ray photoelectron spectroscopy (XPS). The presence of different molybdenum species was correlated with activity and selectivity to formaldehyde during the methane partial oxidation reaction. The main species identified on the Mo(5.0 wt%) /SiO2 surface were MoO3 and monomeric species with a single Mo=O terminal bond. The pre-impregnation of the silica support with sodium strongly diminishes the Mo=O concentration due to the formation of Na2Mo2O7 species and tetrahedral monomers with a high degree of symmetry. As a result of these modifications, both methane conversion and formaldehyde formation are strongly inhibited. The combination of LRS and TDPAC techniques resulted in a powerful tool for the identification and quantification of the molybdenum species present on the surface of a silica support. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Selectivities in methanol oxidation over silica supported molybdenum oxide catalysts were investigated in relation with the phase distribution. The supported catalysts were prepared by impregnation with ammonium heptamolybdate. In addition to crystalline MoO3, Mo containing cluster species of 1–2 nm size were observed by STEM even from a used catalyst with 13% catalyst loading. The percentage of Mo present as crystalline MoO3 increases with the catalyst loading. An ESCA study indicates that part of surface Mo in the supported catalysts is reduced to Mo5+. The dimethyl ether selectivity increases with the catalyst loading and its formation occurs over the crystalline MoO3 phase. The Selectivities to CO and methyl formate are greatly enhanced because of the presence of support, and are relatively independent of the catalyst loading and phase distribution. The dependence and independence of the Selectivities of different byproducts on the loading make the silica supported catalysts with high catalyst loadings less selective for the partial oxidation of methanol to formaldehyde.  相似文献   

17.
Supported molybdenum clusters were prepared by sublimation of Mo(CO)6 onto dehy-droxylated alumina followed by decomposition in flowing dihydrogen at 970 K. These alumina-supported molybdenum clusters were found by XAFS to transform into Mo2C if heated in a 20% methane/H2 mixture at 950 K. For the hydrogenolysis ofn-butane at 510 K and CO-H2 reactions at 570 K, both at atmospheric pressure, molybdenum and carburized molybdenum showed similar, but different for each reaction, turnover rates. The product distribution was the same for each reaction on Mo and Mo2C. In both reactions, in situ XAFS data for fresh and used catalysts indicated that Mo clusters progressively transformed into Mo2C under the reaction conditions  相似文献   

18.
A kind of K–Co–Mo/C catalyst with homogenous components distribution and small particle size was prepared by sol–gel method with citric acid as complexant. Its structure and catalytic performance for mixed alcohol synthesis were investigated. By heat treating the dried gel in argon, the decomposition of citric acid resulted in the formations of amorphous carbon and low-valence MoO2 species. The incorporation of potassium and cobalt increased significantly the alcohol synthesis activity, especially improved the C2+OH selectivity. The optimal atomic composition of catalyst was: 0.10 K: 0.50 Co: 1.0 Mo. Comparing with the similar catalysts reported in literatures, the sol–gel derived K–Co–Mo catalyst showed better performance, especially much higher C2+OH selectivity for mixed alcohol synthesis. A 150 h reaction test indicated that the catalyst had good stability during the entire experimental period. It suggested that the homogenous components distribution and small particle size enhanced the synergistic effect of promoters and created more active species, leading to a high catalytic performance. The formation of MoO2 species was also favorable to improve the catalytic activity because the low-valence Mo4+ was known to be more active in CO hydrogenation.  相似文献   

19.
Reaction mechanism between MoO2 powder and NH3 in the temperature range of 1028‐1273 K has been investigated. The results show that reduction products are strongly dependent on the reaction temperature employed. It is found that molybdenum nitride (Mo2N) can be successfully synthesized when the temperature is below 1078 K, with the morphologies keep the same as that of the raw material MoO2. Although the temperature is above 1078 K, metal Mo powder will be turned up; at the even higher temperatures, the thermodynamically stable phase will be metal Mo. In addition, MoOxN1?x as an intermediate product is formed during the reduction processes.  相似文献   

20.
Phase diagrams of the CuO-MoO3 system were determined in oxygen, in air, and under oxygen pressure. The first two diagrams are quite similar, with temperatures up to 40° higher occurring in oxygen than in air. Stable compounds obtained by low-temperature sintering were CuMoO4 and CUZMoO5, which melted incongruently at 835° and 880° in oxygen and at 812° and 840°C in air, respectively. The MoO3-CuMoO4 eutectic occurs near 30 molyo CuO at 705° in oxygen and at 700° C in air. Above temperatures as low as 865° in oxygen and 840° C in air, oxygen is lost with the production of cuprous compounds. This phenomenon probably accounts for all of the inconsistencies in previous phase diagrams. The dominant cuprous compound in the central region at high temperatures is Cu6Mo4O15, melting congruently at 880° and 895°C in air and oxygen, respectively. On cooling in oxygen-containing atmospheres, this compound changes to cupric Cu3Mo2O9. Unit cell dimensions and an indexed powder pattern are presented for this compound. Experiments under an oxygen pressure of 2 to 3 atm indicate that the cupric compounds in the simple CuO-MoO4, system without reduction are CuMoO4, Cu3Mo2O9, and Cu2MoO5, melting incongruently at 850°, 910°, and 940°C, respectively. In all atmospheres Cu3Mo2O9 is metastable with respect to CuMoO4 and Cu2MoO5 below the incongruent melting point of CuMoO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号