首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
《Ceramics International》2017,43(9):7237-7242
Pairing of large strain response and high d33 with high Tc in (K0.5Na0.5)NbO3-based materials is of high significance in practical applications for piezoelectric actuators. Here, we report remarkable enhancement in the electromechanical properties for (1-x)(K0.52Na0.48) (Nb0.95Sb0.05)O3-xCaZrO3 (KNNS-xCZ) lead-free ceramics through the construction of a rhombohedral (R)-tetragonal (T) phase boundary. We investigated the correlation between the composition-driven phase boundary and resulting ferroelectric, piezoelectric, and strain properties in KNNS-xCZ ceramics. The KNNS-xCZ ceramics with x=0.02 exhibited a large strain response of 0.23% while keeping a relatively large d33 of 237pC/N, which was mainly ascribed to the coexistence of R and T phases confirmed by the XRD and dielectric results. It was found that pairing of large strain response and high d33 in KNN-based materials was achieved. As a consequence, we believe that this study opens the possibility to achieve high-performance lead-free electromechanical compounds for piezoelectric actuators applications.  相似文献   

2.
《Ceramics International》2016,42(12):13824-13829
In this work, (1−x)(K0.52Na0.48)Nb0.95Sb0.05O3−xBi0.5(Na0.8K0.2)0.5ZrO3 [abbreviated as (1−x)KNNS−xBNKZ, x=0–0.06] lead-free ceramics were fabricated using solid-state reaction method. The effects of BNKZ contents on the phase structure, piezoelectric and ferroelectric properties were investigated. The phase boundaries including orthorhombic-tetragonal (O-T) and rhombohedral-tetragonal (R-T) multiphase coexistence were identified by XRD patterns and temperature-dependent dielectric constant by adding different content of BNKZ. A giant field induced strain (~0.25%) along with converse piezoelectric coefficient d33* (~629.4 pm/V) and enhanced ferroelectricity Pr (~38 μC/cm2) were obtained when x=0.02, while the specimen with x=0.03 presented the optimal piezoelectric coefficient d33 of 215 pC/N, due to the O-T or R-T phase coexistence near room temperature respectively. These results show that the introduction of Bi0.5(Na0.8K0.2)0.5ZrO3 is a very effective way to improve the electrical properties of (K0.52Na0.48)(Nb0.95Sb0.05)O3 lead-free piezoelectric ceramics.  相似文献   

3.
《Ceramics International》2022,48(14):19954-19962
Lead-free (1-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-x(Bi0.5Na0.5)(Zr0.8Ti0.2)O3 ceramics (abbreviated as (1-x)KNNS-xBNZT, x = 0, 0.01, 0.02, 0.03, 0.035 and 0.04) were synthesized by the solid-state method, and the dependence of phase evolution, microstructure, oxygen vacancy defect and electrical properties on compositions were carefully investigated. All ceramics had a pure perovskite structure and a dense microstructure. The phase transition temperatures (TR-O and TO-T) of the ceramics were adjusted by adding BNZT, and the rhombohedral-tetragonal (R-T) phase coexistence boundary was successfully constructed at room temperature when x = 0.03, the excellent piezoelectric performance (d33 ~ 323 pC/N, kp ~ 0.372) and high Curie temperature (TC ~ 276 °C) have been achieved at this time. The grain size of the ceramics showed a strong difference on x content, and the maximum relative density value of 95.42% was obtained. The domain structure characterized by PFM confirmed that the ceramics possess small-sized nano-domains and complex domains at x = 0.03, which are the origin of enhanced piezoelectric properties. Moreover, the oxygen vacancy defect that can pin the domain walls was increased with the addition of (Bi0.5Na0.5)(Zr0.8Ti0.2)O3. As a result, the doping with BNZT can significantly affect the phase structure and electrical properties of the ceramics, indicating that the (1-x)KNNS-xBNZT ceramics system with a R-T phase boundary is a promising lead-free piezoelectric material.  相似文献   

4.
Piezoelectric energy harvesting is the most widely investigated technology for renewable energy applications. In this work, (1-x)(Na0.5K0.5)NbO3-xLiSbO3 piezoelectric ceramics were prepared through conventional mixed oxide fabrication methods with different sintering temperatures. Although the (Na0.5K0.5)NbO3 piezoelectric material is representative among the lead-free ceramics, it is difficult to densify by typical sintering techniques owing to its easy evaporation properties of potassium (K+) and sodium ion (Na+). Hence, lithium (Li+) and antimony ion (Sb5+) were used for the partial substitution of (Na0.5K0.5)NbO3. With the optimized sintering temperature, Li+ and Sb5+ are expected to be crucial in increasing the density and enhance the piezoelectric and ferroelectric properties. In this study, the phase, microstructure, and dielectric and electrical properties of (1-x)(Na0.5K0.5)NbO3-xLiSbO3 ceramics depending on the sintering temperature is examined by employing X-ray diffraction, field emission scanning electron microscopy, impedance analyzer, and mechanical force system for energy harvesting.  相似文献   

5.
《Ceramics International》2020,46(3):2798-2804
To further improve the properties of KNN-based lead-free ceramics, a new ceramic system, (0.98-x)K0.525Na0.475Nb0.965Sb0.035O3-0.02 BaZr0.5Hf0.5O3-x(Bi0.5Na0.5)ZrO3(KNNS-BZH-xBNZ) was designed, the relevant properties such as piezoelectricity, strain, and temperature stability were analysed in detail. It was found that the R-T phase boundary can be successfully constructed when x=0.030, and this two-phase coexistence shows relatively good comprehensive properties (d33~410 pC/N, TC~255 °C, Suni~0.132%, and d33*~441 pm/V). Meanwhile, its strain property also shows good temperature stability from room temperature to 180 °C (Suni100°C/SuniRT~97.5% and Suni180°C/SuniRT~83.9%), which is comparatively superior to many KNN-based ceramics and some lead-based ceramics. Therefore, KNNS-BZH-xBNZ ceramics may broaden the practical application of lead-free ceramics.  相似文献   

6.
《Ceramics International》2022,48(7):9324-9329
(K,Na)NbO3 (KNN)-based ceramics have been proven to be formidable candidates among lead-free piezoelectric materials, yet poor reproducibility always hinders their progress. In the present study, the effects of low lithium substitution on the electrical properties and microstructure of (K0.5Na0.5)1-xLixNbO3 (KNLN) ceramics were investigated. All samples were synthesized by the sol-gel method. The Curie temperature (TC) of the ceramics shifted to higher temperature and gradually decreased the monoclinic-tetragonal (TM-T) phase transition. Li+ substitution had a prominent effect on the ferroelectric properties and improved the piezoelectric coefficient (d33) up to 181 pC/N. X-Ray Diffraction (XRD) studies and Field Emission Scanning Electron Microscopy (FESEM) images revealed an inevitable tetragonal tungsten bronze (TTB) secondary phase, which was formed during the preparation process. It was demonstrated that the volatilization of Li+ cations facilitated TTB growth. The coexistence of two different phase structures proved to enhance the KNN piezoelectric performance.  相似文献   

7.
Transparent piezoelectric ceramic, as a lead-free multifunctional ceramic, is in dire need of development for future high-tech industries. However, excellent piezoelectricity and high transmittance are usually hard to achieve simultaneously, mainly due to the two mutual restricting factors (phase structure and grain size). In this work, we report that high piezoelectricity and transmittance can be obtained simultaneously in K0.5Na0.5NbO3 ceramics via Sr(Sc0.5Nb0.5)O3 (SSN) modification. The superior piezoelectric performance comes from the retain of orthorhombic phase structure at room temperature (RT); while the high transparency (>70% at 780 nm) can be attributed to the improved relative density and reduced grain size via SSN modification. Remarkably, in the sample with 0.05SSN modification, we realized a comprehensively high transmittance (73% at 780 nm) accompanied by a superior piezoelectric constant (d33 = 101 pC/N), which outperform other reported KNN-based transparent ceramics to our best knowledge. Our results may provide insight for further developing the transparent piezoelectric ceramics by controlling the grain size and phase structure.  相似文献   

8.
High performance lead-free piezoelectric ceramics are of great importance to the sustainable development of the environment. To obtain excellent comprehensive performance KNN-based lead-free piezoelectric ceramics, a lattice distortion strategy combined with domain configuration was designed in (1 − x)K0.5Na0.5Nb0.95Sb0.05O3xCaHfO3 ((1 − x)KNNS–xCH) system by introduced Ca2+ into the A-site and Hf4+ into the B-site. The results demonstrated that the rhombohedral–orthorhombic–tetragonal polymorphic phase boundary (PPB) was constructed in 0.02 ≤ x ≤ 0.04 and significant lattice distortion occurred in R- and T-phase. Moreover, the 0.97KNNS–0.03CH sample exhibited excellent electrical performance (e.g., kp ∼ 43.8%, d*33 ∼ 478.6 pm/V, and d33 ∼ 392 pC/N) together with a high Curie temperature (TC ∼ 295°C) profited from the PPB and domain configurations. The ceramics also showed the optimal thermal stability, which was beneficial to promote the development of KNN-based ceramics.  相似文献   

9.
《Ceramics International》2023,49(10):15751-15760
In this paper, the ceramics with composition of (0.98-x)(K0.5Na0.5)(Nb0.96Sb0.04)O3-0.02(Bi0.5Na0.5)(Zr0.8Ti0.2)O3-xCaZrO3 (abbreviated as (0.98-x)KNNS-0.02BNZT-xCZ, x = 0, 0.01, 0.015, 0.02, 0.025, 0.03) were prepared by a traditional solid-state reaction method. The effect of the additional amount of CaZrO3 on the phase structure, microstructure, dispersion index, domain structure and piezoelectric properties of ceramics was systematically studied. Finally, the piezoelectric properties and thermal stability of ceramics could be controlled by adding different amounts of CaZrO3. The addition of CaZrO3 transferred the phase structure of the ceramics from orthogonal-tetragonal (O-T) coexistence phase to rhombohedral-orthogonal (R–O) coexistence phase, which could be demonstrated by XRD test, temperature-dependent Raman spectra and εrT plot analysis. And when x = 0.02, the ceramics possessed the best piezoelectric and dielectric properties (d33 = 253 pC/N, εr = 1185, tanδ = 0.044). Such excellent electrical properties could be originated from the heterogeneous domain structure and small-size nano-domains of the ceramics. Moreover, with the increase of CaZrO3 doping amount, the dispersion index of ceramics gradually increased from 1.404 to 1.871, which showed more obvious dispersion phase transition characteristics and improved the thermal stability of ceramics. Particularly, when x = 0.02, after annealing at a high temperature of 220 °C (close to its Curie temperature), the d33 tested at room temperature remained above 85% of that without annealing. The results indicated that (0.98-x)KNNS-0.02BNZT-xCZ ceramic was a promising lead-free piezoelectric ceramic system.  相似文献   

10.
In this work, we studied effects of Ni2O3 and Co2O3 doping on crystal structures, microstructures, orthorhombic and tetragonal phase transition temperature (To-t), and electrical properties of [Li0.06(Na0.57K0.43)0.94][Ta0.05(Sb0.06Nb0.94)0.95]O3 (LNKTSN) lead-free ceramics. The experimental results showed that the Ni2O3 addition with appropriate amount could shift the To-t downwards to the room temperature, and thus obviously increasing the room-temperature piezoelectric coefficient (d33), dielectric coefficient (εr) and electromechanical coupling coefficient (kp) of the LNKTSN ceramics. These were consistent with previous experimental results obtained in Fe2O3 doped LNKTSN ceramics. On the contrary, Co3+ doping shifted continuously the To-t upward and deteriorated obviously piezoelectric properties of LNKTSN ceramics. Fe, Co and Ni had similar ion radii and were expected to result in the same (donor or acceptor) doping effects on electrical properties of LNKTSN ceramics. The different doping effects between Co3+ (deterioration) and Ni3+ or Fe3+ (improvement) on the electrical properties of LNKTSN ceramics suggested that the coexistence of orthorhombic and tetragonal phases at room temperature due to downward shift of To-t, rather than ion doping (donor or acceptor doping) effects was the main cause for enhanced room-temperature piezoelectric properties. This conclusion can be extended to all KNN-based materials in general, thus offering principle guide for future development of new lead-free materials with good piezoelectric properties.  相似文献   

11.
(0.974−x)(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3xSrZrO3 lead-free piezoelectric ceramics have been prepared by the conventional solid state sintering method. Systematic investigation on the microstructure, crystalline structures as well as electrical properties of the ceramics was carried out. With the addition of SrZrO3, the rhombohedral–orthorhombic phase transition temperature of the ceramics increases. Both the rhombohedral–orthorhombic and orthorhombic–tetragonal phase transitions of the ceramics were modified to be around room temperature when x~0.05, and as a result remarkably strong piezoelectricity has been obtained in 0.924(K0.5Na0.5)NbO3–0.026Bi0.5K0.5TiO3–0.05SrZrO3 ternary system, whose piezoelectric parameters were d33=324 pC/N and kp=41%.  相似文献   

12.
Although both the phase type and fraction of multi-phase coexistence can affect the electrical properties of (K,Na)NbO3 (KNN)-based ceramics, effects of phase fraction on their electrical properties were few concerned. In this work, through changing the calcination temperature of CaZrO3 powders, we successfully developed the 0.96 K0.5Na0.5Nb0.96Sb0.04O3-0.01CaZrO3-0.03Bi0.5Na0.5HfO3 ceramics containing a wide rhombohedral-tetragonal (R-T) phase coexistence with the variations of T (or R) phase fractions. It was found that higher T phase fraction can warrant a larger piezoelectric constant (d33) and d33 also showed a linear variation with respect to tetragonality ratio (c/a). More importantly, a number of domain patterns were observed due to high T phase fraction and large c/a ratio, greatly benefiting the piezoelectricity. In addition, the improved ferroelectric fatigue behavior and thermal stability were also shown in the ceramics containing high T phase fraction. Therefore, this work can bring a new viewpoint into the physical mechanism of KNN-based ceramics behind R-T phase coexistence.  相似文献   

13.
《Ceramics International》2019,45(12):14675-14683
In this work, the relationships between the composition-driven phase boundary, ferroelectricity and strain properties of the (1-x)(K0.48Na0.52)(Nb1-ySby)O3-xBi0.5(Na0.82K0.18)0.5ZrO3 (abbreviated as (1-x)KNN1-ySy-xBNKZ) ceramics were investigated. A giant electric field-induced strain of 0.3% (d331 = 750 p.m./V) and a low hysteresis (16.4%) were obtained in the 0.97KNN0.98S0.02-0.03BNKZ ceramics. The giant strain is attributed to the enhanced piezoelectricity induced by the appearance of the O-T phase boundary and the electric-field-induced phase transition from the relaxor phase to the ferroelectric phase. Furthermore, the 0.97KNN0.98S0.02-0.03BNKZ ceramics exhibit good thermal stability in the temperature range from 25 °C to 150 °C. Hence, this work can promote the practical applications of KNN-based lead-free piezoelectric ceramics in highly sensitive and precise piezoelectric actuators.  相似文献   

14.
《Ceramics International》2023,49(15):25035-25042
Due to their high Curie temperature and large dielectric constant, potassium sodium niobate-based lead-free piezo-ceramics (KNN) are regarded as one of the most hopeful piezo-ceramics candidate materials. Herein, (1-x) (K0.5Na0.5)(Nb0.96Sb0.04)O3 - x (Ba0.5Sr0.25)ZrO3 [abbreviated as (1-x) KNNS - x BSZ, x = 0, 0.01, 0.02, 0.03, 0.04 and 0.05] lead-free piezo-ceramics are prepared through chemical doping using the traditional solid phase method. The phase structure, domain structure, and microstructure of KNN ceramics have been thoroughly examined. Doping of BZS causes the formation of R-O-T phase boundaries and increases the proportion of polar nano-domains within the crystals, thus increasing the rate of motion of the domain walls and making the domains more easily deflected. The piezoelectric and dielectric properties of the material are improved simultaneously. When x = 0.04, the piezoelectric properties of ceramics reach the optimal value (d33 = 351 pC/N, TC = 305 °C, Kp = 43% and εr = 41267). This work offers a fresh concept for enhancing the overall performance of lead-free piezo-ceramics and aids in understanding the nature of doping modification of lead-free piezo-ceramics.  相似文献   

15.
Lead‐free perovskite (1‐x)(K0.48Na0.48Li0.04)Nb0.95Sb0.05O3x(Bi0.5Na0.5)HfO3 piezoelectric ceramics were prepared by a traditional ceramic fabrication method. An investigation was conducted to assess the effects of (Bi0.5Na0.5)HfO3 content on the crystal structure, microstructure, phase‐transition temperatures, and piezoelectric properties of the ceramics. The X‐ray diffraction results, combined with the temperature dependence of dielectric properties, revealed that the ceramics experienced a structural transition from an orthorhombic phase to a tetragonal phase with the addition of (Bi0.5Na0.5)HfO3, and a coexistence of orthorhombic and tetragonal phases was identified in the composition range of 0.005≤x≤0.015. An obviously improved piezoelectric activity was obtained for the ceramics with compositions near the orthorhombic‐tetragonal phase boundary, among which the composition x=0.005 exhibited the maximum values of piezoelectric constant d33, and planar and thickness electromechanical coupling coefficients (kp and kt) of 246 pC/N, 0.435, and 0.554, respectively. Furthermore, the Curie temperature of the ceramics was found decreasing with the increase in (Bi0.5Na0.5)HfO3 content, but still maintaining above 300°C for the phase boundary compositions. These results indicate that the ceramics are promising lead‐free candidate materials for piezoelectric applications.  相似文献   

16.
《Ceramics International》2016,42(16):17963-17971
High transparency was obtained in (1−x)(K0.5Na0.5)NbO3xSr(Mg1/3Nb2/3)O3 (x=0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08) lead-free ceramics by pressure-less sintering procedure. The effects of Sr(Mg1/3Nb2/3)O3 content on the microstructure, phase transition, optical properties and electrical properties were studied in detail. The X-ray diffraction results showed that the crystal structure of ceramics gradually transformed from orthorhombic phase into pseudo-cubic phase with doping of Sr(Mg1/3Nb2/3)O3. The fine grain microstructure with clear grain boundary was observed in all compositions, while the grain size exhibited significant composition dependence. It was found that a more uniform distribution with smaller grain size was favorable to high optical transmittance, owing to the decreased scattering by grains and grain boundaries. In addition, a strong diffuse phase transformation in KNN-based ceramics induced by Sr(Mg1/3Nb2/3)O3 doping, causing the ceramics become more relaxor-like and transparent. The transmittance and electric properties results indicated that the 0.95(K0.5Na0.5)NbO3–0.05 Sr(Mg1/3Nb2/3)O3 ceramics exhibited higher transmittance (60% in the near-IR region) accompanied with better electrical properties (εm=2104, Pr=5.0 μC/cm2, d33=92 pC/N).  相似文献   

17.
《Ceramics International》2017,43(11):8004-8009
In this study, <001>-textured 0.99(K0.5Na0.5)0.95Li0.05Nb0.93Sb0.07O3−0.01CaZrO3 [abbreviated as 0.99KNLNS-0.01CZ] lead-free ceramics were prepared by templated grain growth (TGG) using plate-like NaNbO3 templates and sintered by a two-step sintering process with different soaking time. All textured samples with high Lotgering factor (f >85%) presented orthorhombic and tetragonal coexisting phase, and the proportion of orthorhombic phase was varied with prolonged soaking time. A large piezoelectric constant d33 (~ 310 pC/N) was obtained in the textured samples with a 12 h soaking time, which was almost twice larger compared to the randomly oriented one. Furthermore, the field-induced piezoelectric strain coefficient d33*(~ 440 pm/V) of the textured ceramics with 6 h soaking time was larger than the value of randomly oriented one (~ 298 pm/V) at room-temperature. Enhanced piezoelectric response and good temperature stability prove that <001>-textured 0.99KNLNS-0.01CZ ceramics are promising candidates in the field of lead-free piezoelectric materials.  相似文献   

18.
《Ceramics International》2017,43(2):2100-2106
The piezoelectric properties of KNN lead-free piezoelectric ceramics could be greatly enhanced by forming multiphase coexistence. In this work, binary system (1-x)(K0.48Na0.52)(Nb0.95Sb0.05)O3-x(Bi0.5Na0.42Li0.08)0.9Sr0.1ZrO3 [(abbreviated as (1-x)KNNS-xBNLSZ] ceramics with rhombohedral-tetragonal (r-T) phase boundary was designed and synthesized using the conventional solid-state sintering method, and effects of BNLSZ contents on their micrograph, phase structure and electrical properties were also investigated. According to phase diagram from the results of temperature-dependent capacitance and dielectric constant, the ceramics exhibit the R-T phase coexistence in the composition range of 3.5%≤x<4.5%, and an enhanced dielectric, ferroelectric, and piezoelectric behavior was obtained at such a phase boundary zone. As a result, the ceramics with x=0.04 exhibit optimum electrical properties of d33~461 pC/N, kp~46%, tan δ~0.03, Pr~16.9 μC/cm2, and Ec ~9 kV/cm, together with a Curie temperature (TC) of ~228 °C. Such a good comprehensive performance obtained in this present work is due to the R-T phase transition and enhanced ɛrPr. It was believed that this ceramic system would promote the development of KNN-based lead-free ceramics.  相似文献   

19.
The high-temperature and high-performance piezoelectric ceramics are required urgently in the petrochemical, automotive, and aerospace industries. In this work, the (0.85-x)BiFeO3-xPbTiO3-0.15BaTiO3 (BF-PT-BT, x = 0.21, 0.22, 0.23, 0.24 and 0.25) piezoelectric ceramics with both high Curie temperature and large piezoelectric constant d33 were presented. X-ray diffraction analysis shows that BF-PT-BT ceramics exhibit dominant perovskite structure with the coexistence of tetragonal (T) and rhombohedral (R) phases. The c/a ratio, Curie temperature, piezoelectric constant, dielectric constant and loss of the BF-PT-BT ceramics for x = 0.23 are 1.06, 546 °C, 222 pC/N, 545 and 0.013, respectively. Room temperature piezoelectric constant of BF-PT-BT ceramics is much higher than those of PbTiO3, PbNb2O6 and other ABO3 perovskite compounds (BaZrO3, Bi(Zn, Ti)O3, PbZrO3 and Pb(Mg, Nb)O3) modified ternary BiFeO3-PbTiO3 ceramics with similar Curie temperatures. The piezoelectric constant is almost unchanged after BF-PT-BT ceramics was annealed at 450 °C for 30 min, which is due to the stable switched non-180° domain and transformed R phase by annealing treatment.  相似文献   

20.
The longitudinal electrostrictive coefficient Q33 for perovskite-structured ferroelectric ceramics is usually between 0.01?0.04 m4/C2. However, an ultra-low Q33 of only 0.0047 m4/C2 was identified in the 0.9K0.5Na0.5NbO3-0.1SrTiO3 (KNN-ST) composition. Despite the fact that superior piezoelectricity has been observed in KNN-based ceramics, this value is obviously much smaller than the normal value, according to the general cognition and the thermodynamic relationship between piezoelectric coefficient d33 and Q33. Therefore, we synthesized (1?x)(K0.45Na0.49Li0.06)NbO3-xSrTiO3 (KNLN-ST) and studied phase structure, dielectric and ferroelectric properties systematically. Our findings show that the Q33 in the KNLN-ST system (0.012?0.027 m4/C2) is within the reasonable range for perovskite-structured ferroelectric ceramics. Furthermore, an ultra-high electrostrictive strain (>0.3%) with ultra-low hysteresis was achieved in the 0.8KNLN-0.2ST sample. This research not only clarifies the electrostrictive effect in KNN-based systems, but it also broadens the potential application field of KNN-based ceramics to electrostrictive actuators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号