共查询到20条相似文献,搜索用时 15 毫秒
1.
Alejandro Arredondo Haggeo Desirena Ivan Moreno Ignacio E. Orozco Hinostroza 《Journal of the American Ceramic Society》2019,102(3):1425-1434
Ceramic phosphor plates of cerium (Ce3+)-doped oxyfluoride were fabricated by the solid-state reaction method. These phosphors exhibit efficient emission, with the novel feature of color tuning by varying both the doping concentration and excitation wavelength. As the Ce3+ concentration increases, the excitation spectrum broadens by a factor of 1.6, and the excitation peak wavelength shifts from 390 to 435 nm, and there is a variation in excitation energy of ~ 10%. Luminescence spectrum of low Ce3+ concentration samples is tuned from blue to green with the change of excitation wavelength. The emission peak exhibits a shift of 58 nm into the red spectral region, varying the Ce3+ concentration from 0.05 to 0.1 mol% ; whereas this shift is only 6 nm when Ce3+ content changes from 0.25 to 1 mol%. Photoluminescence (PL) quantum yield has achieved 76%. The crystal structure was examined using X-ray diffraction to explain its possible influence on the redshift luminescence. A proof of concept of white LED was constructed using a 450 nm blue LED chip with an oxyfluoride phosphor plate, showing a luminous efficacy (LE) of 64 lm/W with a color rendering index of 74. 相似文献
2.
Chunhui Gao Jialiang Huang Huangxu Li Kaiwen Sun Yanqing Lai Ming Jia Liangxing Jiang Fangyang Liu 《Ceramics International》2019,45(3):3044-3051
The semiconductor antimony sulfide (Sb2S3) is a potential absorber materials for the top sub-cell of Si-based tandem solar cells because of its appropriate band-gap, simple binary composition, nontoxic elements, and long-term stability. In this study, polycrystalline Sb2S3 films were fabricated by post-annealing of radio frequency (RF) magnetron sputtered precursors using an Sb2S3 target. The effects of the post-annealing temperature and atmosphere on Sb2S3 film properties and device performances were investigated. A high-performance device having a 2.41% power conversion efficiency was obtained by making use of a uniform Sb2S3 absorber layer. This preliminary experimental study shows that Sb2S3 thin films could be used as top sub-cell absorber materials for third-generation high efficiency, stable, and environmentally friendly Sb2S3/Si tandem solar cells. 相似文献
3.
《Ceramics International》2020,46(8):12216-12223
A reddish-yellow emitting silicate-based remote phosphor has been developed via the wet-solid phase reaction technique. By employing silica nanoparticles (200 nm), Eu2+ doped CaSrSiO4 phosphor was developed and its efficacy has been examined thoroughly. The developed remote phosphor can get excited over a broad region of the spectrum ranging from ultraviolet to blue (250–500 nm) and as generates a reddish-yellow emission peaked at 580 nm covering a broad range of spectral components (450–800 nm) with a quantum efficiency of 52%. The thermoluminescence studies of developed remote phosphor exhibit 50% of the stable emission up to 200 °C without any shift in the emission wavelength. The developed remote phosphor was then utilized for the making of a proto-type LED using 450 nm blue-emitting commercial LED. The output emission from the proto-type LED confirms the production of efficient warm white light with CCT <5000 K and CRI >85. 相似文献
4.
Chul Huh Bong Kyu Kim Byoung-Jun Park Eun-Hye Jang Sang-Hyeob Kim 《Nanoscale research letters》2013,8(1):14
We report an enhancement in light emission efficiency of Si nanocrystal (NC) light-emitting diodes (LEDs) by employing 5.5 periods of SiCN/SiC superlattices (SLs). SiCN and SiC layers in SiCN/SiC SLs were designed by considering the optical bandgap to induce the uniform electron sheet parallel to the SL planes. The electrical property of Si NC LED with SiCN/SiC SLs was improved. In addition, light output power and wall-plug efficiency of the Si NC LED with SiCN/SiC SLs were also enhanced by 50% and 40%, respectively. This was attributed to both the formation of two-dimensional electron gas, i.e., uniform electron sheet parallel to the SiCN/SiC SL planes due to the conduction band offset between the SiCN layer and SiC layer, and an enhanced electron transport into the Si NCs due to a lower tunneling barrier height. We show here that the use of the SiCN/SiC SL structure can be very useful in realizing a highly efficient Si NC LED. 相似文献
5.
Nicole Stephenson Kenning Beth A Ficek Cindy C Hoppe Alec B Scranton 《Polymer International》2008,57(10):1134-1140
BACKGROUND: Four common free radical photoinitiators were evaluated for use in thick photopolymerizations illuminated with a medium‐pressure 200 W mercury–xenon arc lamp and a high‐intensity 400 nm light‐emitting diode (LED) lamp. For each photoinitiator/lamp combination, the spatial and temporal evolution of the photoinitiation rate profile was analyzed by solving the set of differential equations that govern the light intensity gradient and initiator concentration gradient for polychromatic illumination. RESULTS: The simulation results revealed that two of the four photoinitiators evaluated were ineffective for photoinitiating thick polymer systems. The photoinitiator bis(2,4,6‐trimethylbenzoyl)‐phenylphosphine oxide, in combination with the 400 nm LED lamp, was shown to be the most efficient photoinitiator/light source combination for photoinitiation of thick systems. CONCLUSION: The results show that some photoinitiators commonly used for photopolymerization of thin coatings are ineffective for curing thick systems. LED light sources provide advantages over traditional mercury lamps, and may have tremendous potential in the effective photoinitiation of thick polymer systems. Copyright © 2008 Society of Chemical Industry 相似文献
6.
Xian Yang Yu Zhang Xuejie Zhang Jian Chen Haisen Huang Dongsheng Wang Xirong Chai Gening Xie Maxim S. Molokeev Haoran Zhang Yingliang Liu Bingfu Lei 《Journal of the American Ceramic Society》2020,103(3):1773-1781
The red emission with suitable peak wavelength and narrow band is acutely required for high color rendering index (CRI) white LEDs without at the cost of the luminous efficacy. Herein, the Li2Ca2Mg2Si2N6:Eu2+ red phosphor was prepared with facile solid-state method using Ca3N2, Mg3N2, Si3N4, Li3N, and Eu2O3 as the safety raw materials under atmospheric pressure for the first time, which shows red emission peaking at 638 nm with full width at half maximum (FWHM) of 62 nm under blue light irradiation and becomes the desired red phosphor to realize the balance between luminous efficacy and high CRI in white LEDs. The morphology, structure, luminescence properties, thermal quenching behavior, and chromaticity stability of the Li2Ca2Mg2Si2N6:Eu2+ phosphor are investigated in detail. Concentration quenching occurs when the Eu2+ content exceeds 1.0 mol%, whereas high-temperature photoluminescent measurements show a 32% drop from the room-temperature efficiency at 423 K. In view of the excellent luminescence performances of Li2Ca2Mg2Si2N6:Eu2+ phosphor, a white LEDs with CRI of 91 as a proof-of-concept experiment was fabricated by coating the title phosphor with Y3Al5O12:Ce3+ on a blue LED chip. In addition, the potential application of the title phosphor in plant growth LED device was also demonstrated. All the results indicate that Li2Ca2Mg2Si2N6:Eu2+ is a promising red-emitting phosphor for blue LED-based high CRI white LEDs and plant growth lighting sources. 相似文献
7.
Zhongchao Tan 《Powder Technology》2008,183(2):147-151
An analytical model was developed to predict the fractional efficiency of a uniflow cyclone with a tangential inlet. The analysis showed that the separation efficiency is a function of particle Stokes number and the geometry of the cyclone body. Six sets of experiments were conducted under different conditions to validate the model. The experimental fractional efficiencies were determined by the total mass efficiency and the corresponding size distributions measured by using an offline particle sizer. Overall the experiments agreed with the modeling results well. Both model and experiments showed that the efficiency of this cyclone reached 99.5% and above when Stk > 1.0. 相似文献
8.
Regulating the micromixing efficiency of a novel helical tube reactor by premixing behavior optimization 下载免费PDF全文
Jiang‐Zhou Luo Guang‐Wen Chu Yong Luo Moses Arowo Bao‐Chang Sun Jian‐Feng Chen 《American Institute of Chemical Engineers》2017,63(7):2876-2887
In this work, a novel helical tube reactor (HTR) was constructed, including a pre‐mixer for adjusting the premixing behavior of reactants and a helical tube as a further mixing unit. The pre‐mixer was modified to optimize the premixing behavior by using two methods, named as tangential‐feeding and insertion of a helical baffle. The premixing behaviors were investigated via computational fluid dynamics (CFD) simulation. Simulation results indicated that both methods can change the fluid flow, enhance the turbulence kinetic energy, and improve the premixing performance in the pre‐mixers. Based on the results of CFD simulation, it could be predicted that the micromixing efficiency of the HTR can be regulated by these methods accordingly. Then the predicated results were confirmed experimentally by a parallel competing reaction. Furthermore, the relationship between the premixing performance increasing and the corresponding micromixing efficiency increasing of the HTR was quantitatively analyzed. © 2017 American Institute of Chemical Engineers AIChE J, 63: 2876–2887, 2017 相似文献
9.
Statistical key variable analysis and model-based control for the improvement of thermal efficiency of a multi-fuel boiler 总被引:1,自引:0,他引:1
Burning multi-fuel, including gases, liquid fuels and coal, whose flow rates and heating values vary all the time, a typical boiler in the steel and iron plant poses a challenge to achieving optimal operation. The present study proposes to develop an adaptive data-driven thermal efficiency estimator of multi-fuel boilers based on statistical identification of key variables. With the available on-line efficiency model, the model-based controller is hence readily applicable to improve the boiler efficiency. Real operation data taken from two industrial boilers are used to verify the effectiveness of the proposed method. The first half part of data serves to develop statistical models while the second half part serves to be simulated as virtual plants. The application of the proposed methods improved 1.94% of the thermal efficiency of a boiler burning multi-gas and 0.73% of a boiler burning coal and multi-gas in the virtual plant simulations. 相似文献
10.
Nitrogen use efficiency by maize as affected by a mucuna short fallow and P application in the coastal savanna of West Africa 总被引:1,自引:0,他引:1
Maize is the primary food crop grown by farmers in the coastal savanna region of Togo and Benin on degraded (rhodic ferralsols), low in soil K-supplying capacity, and non-degraded (plinthic acrisols) soils. Agronomic trials were conducted during 1999–2002 in southern Togo on both soil types to investigate the impact of N and P fertilization and the introduction of a mucuna short fallow (MSF) on yield, indigenous N supply of the soil, N recovery fraction and internal efficiency of maize. In all plots, an annual basal dose of 100 kg K ha–1 was applied to the maize crop. Maize and mucuna crop residues were incorporated into the soil during land preparation. Treatment yields were primarily below 80% of CERES-MAIZE simulated weather-defined maize yield potentials, indicating that nutrients were more limiting than weather conditions. On degraded soil (DS), maize yields increased from 0.4 t ha–1 to 2.8 t ha–1 from 1999 to 2001, without N or P application, in the absence of MSF, with annual K application and incorporation of maize crop residues. Application of N and P mineral fertilizer resulted in yield gains of 1–1.5 t ha–1. With MSF, additional yield gains of between 0.5 and 1.0 t ha–1 were obtained at low N application rates. N supply of the soil increased from 10 to 42 kg ha–1 from 1999 to 2001 and to 58 kg N ha–1 with MSF. Application of P resulted in significant improvements in N recovery fraction, and greatest gains were obtained with MSF and P application. MSF did not significantly affect internal N efficiency, which averaged 45 kg grain (kg N uptake)–1. On non-degraded soils (NDS) and without N or P application, in the absence of MSF, maize yields were about 3 t ha–1 from 1999 to 2001, with N supply of the soil ranging from 55 to 110 kg N ha–1. Application of 40 kg P ha–1 alone resulted in significant maize yield gains of between 1.0 (1999) and 1.5 (2001) t ha–1. Inclusion of MSF did not significantly improve maize yields and even reduced N recovery fraction as determined in the third cropping year (2001). Results illustrate the importance of site-specific integrated soil fertility management recommendations for the southern regions of Togo and Benin that consider indigenous soil nutrient-supplying capacity and yield potential. On DS, the main nutrients limiting maize growth were N and probably K. On NDS, nutrients limiting growth were mainly N and P. Even on DS rapid gains in productivity can be obtained, with MSF serving as a means to allow farmers with limited financial means to restore the fertility of such soils. MSF cannot be recommended on relatively fertile NDS. 相似文献
11.
《Ceramics International》2023,49(3):4393-4402
In the present work, we modified the surface morphology of 3D porous ceramic scaffolds by incorporating strontium phosphate (SrP) hollow nano-/microspheres with potential application as delivery system for the local release of therapeutic substances. SrP hollow spheres were synthesized by a template-free hydrothermal method. The influence of the reaction temperature, time and concentration of reactants on precipitates' morphology and size were investigated. To obtain a larger number of open hollow spheres, a new methodology was developed consisting of applying a second hydrothermal treatment to spheres by heating them at 120 °C for 24 h. The X-ray diffraction (XRD) analysis indicated that spheres consisted of a main magnesium-substituted strontium phosphate phase ((Sr0.86Mg0.14)3(PO4)2). The scanning electron microscopy (SEM) micrographs confirmed that spheres had hollow interiors (~350 nm size) and an average diameter of 850 nm. Spheres had a specific surface area of 30.5 m2/g, a mesoporous shell with an average pore size of 3.8 nm, and a pore volume of 0.14 cm3/g. These characteristics make them promising candidates for drug, cell and protein delivery. For the attachment of spheres to scaffolds’ surface, ceramic structures were immersed in an ethanol solution containing 0.1 g of hollow spheres and kept at 37 °C for 4 h. The scaffolds with incorporated spheres were bioactive after being immersed in simulated body fluid (SBF) for 7 days and spheres were still adhered to their surface after 14 days. 相似文献
12.
分析云峰分公司200kt/a磷酸装置浓缩氟吸收效率低的原因。采取强化管道洗涤,吸收塔增加1层喷头,喷头改为防堵塞新型喷头,吸收塔后增加分离器等措施,使氟吸收效率达90%以上。 相似文献
13.
Haohao Wang Zhonghu Zhu Baoliang Ma Liangshu Wei Langkai Li 《Ceramics International》2021,47(17):24163-24169
The SrSi2O2N2:Eu2+ green-emitting phosphor, as a member of oxynitride phosphors, could greatly enhance the color quality of the white-light conversed by single yellow-emitting phosphor. However, SrSi2O2N2:Eu2+ phosphors prepared by traditional solid-state ways normally consist hard agglomerates with unevenly dispersed particles and therefore suppress the luminescence properties. This research proposes a heterogeneous precipitation protocol where precipitation process is introduced, in order to produce a precursor in the first phase. And in the second phase, a high-temperature solid-state process is adopted for obtaining the final product. The main results show that, for an optimized SrSi2O2N2:Eu2+ phosphor prepared using our protocol, (1) the SrSi2O2N2:Eu2+ particles are faceted and with smooth faces and (2) the phosphor photoluminescence, external quantum efficiency, stability against thermal exposure, and physical stability consistently outperform the current commercially used product. This research essentially provides an economic way for production of solid-state lighting with enhanced color quality. 相似文献
14.
In a laboratory experiment 5 cm depth of water was allowed to percolate daily down through a 15 cm thick soil (Typic Ustipsamment) layer. It was observed that leaching losses of urea supergranules (USG)-N could be decreased by about 20% by the placement of four 0.25 g granules at four points instead of one 1 g granule at one point. In field microplots, the placement of approximately 30 granules of 0.30 g size instead of 9 granules of 1.00 g size resulted in reduced leaching of USG-N and, in turn, increased rice yield. In a follow-up field study, the advantage of more frequently placed USG was confirmed. As compared with 1 g USG placed in the usual manner in the center of four rice hills, increasing the density of placement in soil produced 15% more rice grain. Further increase in rice yield could be obtained by increasing the number of USG placed in the soil and decreasing the size of the granule from 1.00 g to 0.70 or 0.35 g. With USG of 0.35 and 0.70 g yields were equal or sometimes even slightly higher than with split application of prilled urea on a heavily percolating, low-CEC, light-textured soil. 相似文献
15.
Arie Jan van Houwelingen Willie Nicol 《American Institute of Chemical Engineers》2011,57(5):1310-1319
A novel method for the measurement of wetting efficiency in a trickle‐bed reactor under reaction conditions is introduced. The method exploits reaction rate differences of two first‐order liquid‐limited reactions occurring in parallel, to infer wetting efficiencies without any other knowledge of the reaction kinetics or external mass transfer characteristics. Using the hydrogenation of linear‐ and isooctenes, wetting efficiency is measured in a 50‐mm internal diameter, high‐pressure trickle‐bed reactor. Liquid–solid mass transfer coefficients are also estimated from the experimental conversion data. Measurements were performed for upflow operation and two literature‐defined boundaries of hydrodynamic multiplicity in trickle flow. Hydrodynamic multiplicity in trickle flow gave rise to as much as 10% variation in wetting efficiency, and 10–20% variation in the specific liquid–solid mass transfer coefficient. Conversions for upflow operation were significantly higher in trickle‐flow operation, because of complete wetting and better liquid–solid mass transfer characteristics. © 2010 American Institute of Chemical Engineers AIChE J, 2011. 相似文献
16.
In this study, microwave irradiation was used for the fast preparation (min) of a sol-gel-derived carbon nanotube ceramic electrode (MW-CNCE). For confirmation of the preparation of the ceramic by MW irradiation, Fourier transform infrared, X-ray diffraction spectra and scanning electron microscopy images of the produced ceramic were compared with those of conventional ceramic (which is produced by drying the ceramic in air for 48 h). The electrochemical behavior of MW-CNCE in nicotinamide adenine dinucleotide, l-cysteine, adenine and guanine was compared with that of a conventional sol-gel-derived carbon nanotube ceramic electrode (CNCE). In all systems, similar peak potentials and lower background currents were obtained with respect to CNCE. Finally, the MW-CNCE was used for the simultaneous determination of adenine and guanine using differential pulse voltammetry. The linear ranges of 0.1-10 and 0.1-20 μM were obtained for adenine and guanine, respectively. These results are comparable with some modified electrodes that have recently been reported for the determination of adenine and guanine, with the advantage that the proposed electrode did not contain modifier. In addition, the proposed electrode was successfully used for the oxidation of adenine and guanine in DNA, and the detection limit for this measurement was 0.05 μg mL−1 DNA. 相似文献
17.
《Journal of the European Ceramic Society》2019,39(2-3):212-221
Four unidirectional fiber reinforced SiCN ceramic matrix composites were manufactured by means of polymer infiltration and pyrolysis. Two carbon fibers (T800H and Granoc XN90) as well as two silicon carbide fibers (Tyranno ZMI and SA3) without fiber coating were chosen. As matrix precursor, a poly(methylvinyl)silazane was investigated and utilized. The composites with the SA3 and the XN90 fiber had the highest tensile strengths of 478 and 288 MPa, respectively. It is considered that these high modulus fibers with the low modulus SiCN matrix create weak matrix composites. After exposure to air (T = 1200 °C, 10 h), a significant decrease of the mechanical properties was found, caused by the burnout of carbon fibers and the oxidation through open pores stemming from the PIP process and SiCN/SiCN interfaces in case of the SiC fiber based composites. 相似文献
18.
19.
Sudip Biswas Nancy J. Wahl Michael J. Thomson John M. Cason Bill F. McCutchen Endang M. Septiningsih 《International journal of molecular sciences》2022,23(2)
The cultivated peanut (Arachis hypogaea L.) is a legume consumed worldwide in the form of oil, nuts, peanut butter, and candy. Improving peanut production and nutrition will require new technologies to enable novel trait development. Clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR–Cas9) is a powerful and versatile genome-editing tool for introducing genetic changes for studying gene expression and improving crops, including peanuts. An efficient in vivo transient CRISPR–Cas9- editing system using protoplasts as a testbed could be a versatile platform to optimize this technology. In this study, multiplex CRISPR–Cas9 genome editing was performed in peanut protoplasts to disrupt a major allergen gene with the help of an endogenous tRNA-processing system. In this process, we successfully optimized protoplast isolation and transformation with green fluorescent protein (GFP) plasmid, designed two sgRNAs for an allergen gene, Ara h 2, and tested their efficiency by in vitro digestion with Cas9. Finally, through deep-sequencing analysis, several edits were identified in our target gene after PEG-mediated transformation in protoplasts with a Cas9 and sgRNA-containing vector. These findings demonstrated that a polyethylene glycol (PEG)-mediated protoplast transformation system can serve as a rapid and effective tool for transient expression assays and sgRNA validation in peanut. 相似文献
20.
Abdul Latif Ahmad Nur Aimie Abdullah SaniSharif Hussein Sharif Zein 《Ceramics International》2011,37(8):2981-2989
A SrCo0.8Fe0.2O3 impregnated TiO2 membrane (TiO2-SrCo0.8Fe0.2O3 membrane) was successfully prepared using a sol-gel method in combination with a wet impregnation process. The membrane was subjected to a single gas permeance test using oxygen (O2) and nitrogen (N2). The TiO2 membrane was immersed in the SrCo0.8Fe0.2O3 solution, dried and then calcined to affix SrCo0.8Fe0.2O3 into the membrane. The effect of the acid/alkoxide (H+/Ti4+) molar ratio of the TiO2 sol on the TiO2 phase transformation was investigated. The optimal molar ratio was found to be 0.5, which resulted in nanoparticles with a mean size of 5.30 nm after calcination at 400 °C. The effect of calcination temperature on the phase transformation of TiO2 and SrCo0.8Fe0.2O3 was investigated by varying the calcination temperature from 300 to 500 °C. X-ray diffraction spectroscopy (XRD) and Fourier transform infrared (FTIR) analysis confirmed that a calcination temperature of 400 °C was preferable for preparing a TiO2-SrCo0.8Fe0.2O3 membrane with fully crystallized anatase and SrCo0.8Fe0.2O3 phases. The results also showed that polyvinyl alcohol (PVA) and hydroxypropyl cellulose (HPC) were completely removed. Field emission scanning electron microscopy (FESEM) analysis results showed that a crack-free and relatively dense TiO2 membrane (∼0.75 μm thickness) was created with a multiple dip-coating process and calcination at 400 °C. The gas permeation results show that the TiO2 and TiO2-SrCo0.8Fe0.2O3 membranes exhibited high permeances. The TiO2-SrCo0.8Fe0.2O3 membrane developed provided greater O2/N2 selectivity compared to the TiO2 membrane alone. 相似文献