首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study used annular reactors (AR) to investigate, under controlled laboratory conditions, the effects of temperature and biodegradable organic matter (BOM) on the free chlorine residual needed to control biofilm accumulation, as measured by heterotrophic plate count (HPC) bacteria. Biofilm was grown on PVC coupons, initially in the absence of chlorine, at 6, 12, and 18 degrees C, in the presence and absence of a BOM supplement (250 microg C/L) added as acetate. During the early stages of chlorine addition, when no measurable free chlorine residual was present, a reduction in biofilm HPC numbers was observed. Subsequently, once sufficient chlorine was added to establish a residual, the biofilm HPC numbers expressed as log CFU/cm2 fell exponentially with the increase in free chlorine residual. Temperature appeared to have an important effect on both the chlorine demand of the system and the free chlorine residual required to control the biofilm HPC numbers to the detection limit (3.2 Log CFU/cm2). For the water supplemented with BOM, a strong linear correlation was found between the temperature and the free chlorine residual required to control the biofilm. At 6 degrees C, the presence of a BOM supplement appeared to substantially increase the level of free chlorine residual required to control the biofilm. The results of these laboratory experiments provide qualitative indications of effects that could be expected in full-scale systems, rather than to make quantitative predictions.  相似文献   

2.
Bacterial growth in hot water systems seems to cause problems such as bad odor of the water, skin allergies and increased heat transfer resistance in heating coils. In order to establish a basis for long-term suppression of bacterial growth, we studied the distribution of bacteria in a Danish domestic hot water system. Heterotrophic plate counts (HPC) were measured in both water and biofilm samples from various sampling sites in the system. In hot water samples, where the temperature was 55-60 degrees C, the HPC were 10(3)-10(4)CFU/mL at incubation temperatures of 25 degrees C or 37 degrees C and 10(5)CFU/mL at 55 degrees C or 65 degrees C. In the cold water (10 degrees C) supplying the hot water system, the HPC at 25 degrees C or 37 degrees C was lower than in the hot water, and no bacteria were found after incubation at 55 degrees C or 65 degrees C. HPC constituted from 38% to 84% of the AODC results in hot water but only 2% in cold water, which showed a high ratio of culturable bacteria in hot water. Biofilm samples from the hot water tank and the inner surface of the pipes in the cold and hot water distribution system were collected by specially designed sampling devices, which were exposed in the system for 42 days. The quasi-steady-state number of bacteria in the biofilm, measured as the geometric mean of the HPC obtained between 21 and 42 days, was five-fold higher in the hot water pipe (13x10(5)CFU/cm(2) at 55 degrees C) than in the cold water pipe (2.8x10(5)CFU/cm(2) at 25 degrees C). There was no significant difference between the number of bacteria in the biofilm samples from the top, middle and bottom of the hot water tank, and the number of bacteria in the biofilm counted at 55 degrees C ranged from 0.6x10(4) to 1.7x10(4)CFU/cm(2). The surfaces of the sacrificial aluminum anodes and the heating coils in the hot water tank also contained high bacterial numbers. The measured number of bacteria in water and biofilm samples was related to the dimensions of the hot water system, and calculations showed that the majority of bacteria (72%) were located in the biofilm especially in the distribution system, which accounts for the greatest surface area. Free-living bacteria accounted for 26% and only a minor part of the bacteria were in the sludge in the hot water tank (2%).  相似文献   

3.
Antibiotic resistance of E. coli in sewage and sludge   总被引:6,自引:0,他引:6  
The aim of the study is the evaluation of resistance patterns of E. coli in wastewater treatment plants without an evaluation of basic antibiotic resistance mechanisms.Investigations have been done in sewage, sludge and receiving waters from three different sewage treatment plants in southern Austria. A total of 767 E. coli isolates were tested regarding their resistance to 24 different antibiotics. The highest resistance rates were found in E. coli strains of a sewage treatment plant which treats not only municipal sewage but also sewage from a hospital.Among the antimicrobial agents tested, the highest resistance rates in the penicillin group were found for Ampicillin (AM) (up to 18%) and Piperacillin (PIP) (up to 12%); in the cephalosporin group for Cefalothin (CF) (up to 35%) and Cefuroxime-Axetil (CXMAX) (up to 11%); in the group of quinolones for Nalidixic acid (NA) (up to 15%); and for Trimethoprime/Sulfamethoxazole (SXT) (up to 13%) and for Tetracycline (TE) (57%).Median values for E. coli in the inflow (crude sewage) of the plants were between 2.0 x 10(4) and 6.1 x 10(4)CFU/ml (Coli ID-agar, BioMerieux 42017) but showed a 200-fold reduction in all three plants in the effluent. Nevertheless, more than 10(2)CFU E. coli/ml reached the receiving water and thus sewage treatment processes contribute to the dissemination of resistant bacteria in the environment.  相似文献   

4.
实现UBAF快速启动的挂膜试验研究   总被引:4,自引:1,他引:3  
采用上向流曝气生物滤池(UBAF)工艺,以生物陶粒和聚苯乙烯为填料,进行了自然挂膜法和接种挂膜法的对比试验,考察了UBAF对COD、NH4+-N及浊度的去除效果.试验结果表明:生物膜成熟后,UBAF对COD、NH4+-N及浊度均有很好的去除效果,稳定运行时UBAF对上述指标的平均去除率为81.04%、80.21%和95.97%,若要达到同样的COD去除效果,接种挂膜比自然挂膜缩短了4~6 d.聚苯乙烯填料UBAF对NH4+-N的去除效果优于生物陶粒填料UBAF,而后者对浊度的去除效果较前者好.  相似文献   

5.
Laboratory experiments were conducted on six point-of-use (POU) ceramic water filters that were manufactured in Nicaragua; two filters were used by families for ca. 4 years and the other filters had limited prior use in our lab. Water spiked with ca. 106 CFU/mL of Escherichia coli was dosed to the filters. Initial disinfection efficiencies ranged from 3 - 4.5 log, but the treatment efficiency decreased with subsequent batches of spiked water. Silver concentrations in the effluent water ranged from 0.04 - 1.75 ppb. Subsequent experiments that utilized feed water without a bacterial spike yielded 103-105 CFU/mL bacteria in the effluent. Immediately after recoating four of the filters with a colloidal silver solution, the effluent silver concentrations increased to 36 - 45 ppb and bacterial disinfection efficiencies were 3.8-4.5 log. The treatment effectiveness decreased to 0.2 - 2.5 log after loading multiple batches of highly contaminated water. In subsequent loading of clean water, the effluent water contained <20-41 CFU/mL in two of the filters. This indicates that the silver had some benefit to reducing bacterial contamination by the filter. In general these POU filters were found to be effective, but showed loss of effectiveness with time and indicated a release of microbes into subsequent volumes of water passed through the system.  相似文献   

6.
Edge TA  Hill S 《Water research》2007,41(16):3585-3594
Multiple microbial source-tracking methods were investigated to determine the source of elevated Escherichia coli levels at Bayfront Park Beach in Hamilton Harbour, Lake Ontario. E. coli concentrations were highest in wet foreshore sand (114,000 CFU/g dry sand) and ankle-depth water (177,000 CFU/100mL), declining rapidly in deeper waters. Many gull and geese droppings were enumerated each week on the foreshore sand within 2m of the waterline. Both antimicrobial resistance analysis and rep-PCR DNA fingerprinting of E. coli collected at the beach and nearby fecal pollution sources indicated that E. coli in sand and water samples were predominantly from bird droppings rather than from pet droppings or municipal wastewater. Both methods indicated a trend of decreasing bird contamination, and increasing wastewater contamination, moving offshore from the beach. When foreshore sand was treated as a reservoir and secondary source of E. coli, waterborne E. coli were found to be more similar to sand isolates than bird or wastewater isolates out to 150 m offshore. Multiple lines of evidence indicated the importance of bird droppings and foreshore sand as primary and secondary sources of E. coli contamination in beach water at Bayfront Park.  相似文献   

7.
Urfer D  Huck PM 《Water research》2001,35(6):1469-1477
A simple respirometric method was developed and applied for the measurement of biomass activity in bench-scale drinking water biofilters. The results obtained with the new method, i.e. biomass respiration potential (BRP), indicated a high sensitivity allowing the quantification of the activity of low amounts of biomass. The analysis of duplicate samples showed a reasonable reproducibility, i.e. average coefficient of variation of 14% (n = 19). The calculation of the ratio between biomass activity and the amount of viable biomass (phospholipid) at different filter depths indicated a substantial increase of this ratio with filter depth. This indicated an increased biomass activity per unit amount of viable biomass deeper in the biofilters, where biofilm thickness is low. The comparison of the filter profiles of biomass activity and dissolved biodegradable organic matter (BOM), expressed as theoretical oxygen demand, showed a high correlation between these profiles. Consequently, BRP results appear to be good indicators of the BOM removal capacity of the filter biomass. Therefore, BRP results can potentially be used in certain cases instead of BOM measurements for the assessment of the BOM removal capacity of drinking water biofilters, operated under different conditions. This is important because of the relative complexity of the measurements of BOM surrogates, e.g. assimilable organic carbon and biodegradable dissolved organic carbon, and BOM components.  相似文献   

8.
Gagnon GA  Huck PM 《Water research》2001,35(10):2554-2564
This paper evaluates the rate of utilization of easily biodegradable organic compounds by drinking water biofilms. Tap water, which had been filtered through biologically active granular activated carbon, was used as an innoculum for biofilm growth in annular reactors (ARs). Synthetic cocktails of easily biodegradable material in the concentration range of 50-2,000 mgC/m3 were used as substrate for biofilm growth. Influent and effluent aggregate concentrations of biodegradable organic matter (BOM) were calculated by adding the measurable BOM components on a mass carbon basis. The aggregate BOM values were used for calculating the observed Damk?hler number and Theile modulus (based on a reaction rate per unit surface area), which were used to determine whether external or internal mass transfer limited BOM removal. For all of the experimental trials, it was shown that neither external nor internal mass transfer limited BOM removal. Because the biofilms in this research are thin and the fact that mass transfer is not limiting, it was assumed that the bulk BOM concentration was approximately equal to the average BOM concentration in the biofilm. A linear model was obtained for the aggregate BOM flux and the product of the effluent BOM concentration and the biofilm density. The slope or the areal biodegradation rate (ka) for the aggregate BOM was 0.033 m/h, as determined through a linear regression.  相似文献   

9.
A bacterium (MJ-PV) previously demonstrated to degrade the cyanobacterial toxin microcystin LR, was investigated for bioremediation applications in natural water microcosms and biologically active slow sand filters. Enhanced degradation of microcystin LR was observed with inoculated (1 x 10(6) cell/mL) treatments of river water dosed with microcystin LR (>80% degradation within 2 days) compared to uninoculated controls. Inoculation of MJ-PV at lower concentrations (1 x 10(2)-1 x 10(5) cells/mL) also demonstrated enhanced microcystin LR degradation over control treatments. Polymerase chain reactions (PCR) specifically targeting amplification of 16S rDNA of MJ-PV and the gene responsible for initial degradation of microcystin LR (mlrA) were successfully applied to monitor the presence of the bacterium in experimental trials. No amplified products indicative of an endemic MJ-PV population were observed in uninoculated treatments indicating other bacterial strains were active in degradation of microcystin LR. Pilot scale biologically active slow sand filters demonstrated degradation of microcystin LR irrespective of MJ-PV bacterial inoculation. PCR analysis detected the MJ-PV population at all locations within the sand filters where microcystin degradation was measured. Despite not observing enhanced degradation of microcystin LR in inoculated columns compared to uninoculated column, these studies demonstrate the effectiveness of a low-technology water treatment system like biologically active slow sand filters for removal of microcystins from reticulated water supplies.  相似文献   

10.
A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP). Modelling of biomass removal indicated that a series of six to eight sonication treatments of 2 min each yielded more than 90% of the attached active biomass. The ATP concentrations in 30 different GAC filters at nine treatment plants in The Netherlands ranged from 25 to 5000 ng ATP cm(-3) GAC, with the highest concentrations at long filter run times and pretreatment with ozone. A similar concentration range was observed in nine rapid sand (RS) filters. ATP concentrations correlated significantly (p<0.05) with total direct bacterial cell counts in each of these filter types, but the median value of the ATP content per cell in GAC filters (2.1 x 10(-8) ng ATP/cell) was much lower than in the RS filters (3.6 x 10(-7) ng ATP/cell). Average biofilm concentrations ranging from 500 to 10(5) pg ATP cm(-2) were calculated assuming spherical shapes for the GAC particles but values were about 20 times lower when the surface of pores >1 microm diameter is included in these calculations. The quantitative biomass analysis with ATP enables direct comparisons with biofilm concentrations reported for spiral wound membranes used in water treatment, for distribution system pipes and other aquatic environments.  相似文献   

11.
生物砂滤池不同挂膜方法的试验研究   总被引:5,自引:0,他引:5  
根据生物砂滤池的运行特点,通过试验对自然挂膜和接种挂膜两种不同挂膜方法下,各滤柱中的生物量和生物活性,对CODMn、NH4^+ -N和UV254的去除效果以及运行周期进行了分析研究。结果表明,接种挂膜的启动时间比自然挂膜缩短了6~8d,同时生物量较多,但生物活性比自然挂膜法低12.03%~14.29%;各柱对CODMn、NH4^+ -N均有很好的去除效果,平均去除率在35%和80%以上;但采用自然挂膜法对污染物的去除效果更佳,特别是对UV254的去除率较接种挂膜法提高了5.01%~10.8%,并且运行周期延长了6~10h,运行更为稳定。  相似文献   

12.
Hwang MG  Katayama H  Ohgaki S 《Water research》2007,41(18):4097-4104
In this study, silver cations dissolved as silver nitrate at various concentrations were exposed to Legionella pneumophila, Pseudomonas aeruginosa, and Escherichia coli to quantitatively estimate the bactericidal ability of silver. Observed data were analyzed using a newly developed model (Cs x T) that introduced a specific amount of chemisorbed silver onto a bacterial cell (Cs), which represented the chemisorption properties of silver on the bacterial cell body. Silver cations were rapidly chemisorbed onto bacterial cells after injection into samples, and Cs values (initial concentration of silver was 0.1 mg Ag/l) were calculated as 1.810 x 10(-6) (L. pneumophila), 1.102 x 10(-6) (P. aeruginosa), and 1.638 x 10(-6) microg Ag/cell(i) (E. coli) after incubation for 8 h. During that time, the three tested bacteria were completely inactivated under the detection limit (>7.2 log reduction). Based on the calculated Cs values, bacterial tolerance against silver was estimated by using the equation (Cs x T) multiplying the Cs values with exposure time (T). The Cs x T values well represented the bactericidal abilities of silver against the tested bacteria. The demanded Cs x T values to accomplish a 1 log inactivation (90% reduction) of L. pneumophila, P. aeruginosa, and E. coli (the initial numbers of bacteria were 1.5 x 10(7) CFU/ml, approximately) were estimated as 2.44 x 10(-6), 0.63 x 10(-6), and 0.46 x 10(-6) microgh/cell(i) of silver. The values were significantly reduced to 1.54 x 10(-6), 0.31 x 10(-6), and 0.25 x 10(-6) microgh/cell(i), respectively, with simultaneous injection of silver and copper. This study shows the successful quantitative estimation of the bactericidal ability of silver by applying the newly developed model (Cs x T). Among the tested bacteria, L. pneumophila showed the strongest tolerance to exposure of the same concentration of silver.  相似文献   

13.
Numerous biological, physical and chemical parameters are involved in the retention and removal of bacteria in wastewater treatment systems. Biological parameters, such as biofilms and protozoa grazing activity, are often mentioned but few studies provide a better understanding of their influence. In this study, the effect of bacterivorous protozoa on pathogenic indicator bacteria removal was investigated in septic effluent and in the presence of a biofilm coating glass slides. Endogenous bacteria from septic effluent were quantified. First, bacteria removal was compared between septic effluents treated or not with an inhibitor of protozoa (cycloheximide). The mortality rates were 10 times lower in treated effluent (96 CFU mL(-1) d(-1)) than in untreated effluent (1100 CFU mL(-1) d(-1)). Secondly, the efficiency of bacteria removal was studied (i) with a biofilm surface and active protozoa, (ii) with a biofilm surface and inactivated protozoa, (iii) with a clean surface. Protozoa in the presence of a biofilm were responsible for 60% of bacteria removal. Biofilm without protozoa and a clean surface each removed similar quantities of bacteria. Grazing by protozoa could be an important biological mechanism for bacterial elimination in wastewater treatment systems.  相似文献   

14.
Pilot studies investigated the fates of color, dissolved organic carbon (DOC), and biodegradable organic matter (BOM) by the tandem of ozone plus biofiltration for treating a source water having significant color (50 cu) and DOC (3.2 mg/l). Transferred ozone doses were from 1.0 to 1.8 g O3/g C. Rapid biofilters used sand, anthracite, or granular activated carbon as media with empty-bed contact time (EBCT) up to 9 min. The pilot studies demonstrated that ozonation plus biofiltration removed most color and substantial DOC, and increasing the transferred ozone dose enhanced the removals. For the highest ozone dose, removals were as high as 90% for color and 38% for DOC. While most of the color removal took place during ozonation, most DOC removal occurred in the biofilters, particularly when the ozone dose was high. Compared to sand and anthracite biofilters, the GAC biofilter gave the best performance for color and DOC removal, but some of this enhanced performance was caused by adsorption, since the GAC was virgin at the beginning of the pilot studies. Backwashing events had no noticeable impact of the performance of the biofilters. The Transient-State, Multiple-Species Biofilm Model (TSMSBM) was used to interpret the experimental results. Model simulations show that soluble microbial products, which comprised a significant part of the effluent BOM, offset the removal of original BOM, a factor that kept the removal of DOC relatively constant over the range of EBCTs of 3.5-9 min. Although improved biofilm retention, represented by a small detachment rate, allowed more total biofilm accumulation and greater removal of original BOM, it also caused more release of soluble microbial products and the build up of inert biomass in the biofilm. Backwashing had little impact on biofilter performance, because it did not remove more than 25% of the biofilm under any condition simulated.  相似文献   

15.
The removal mechanism of E. coli from UASB effluent using a Rotating Biological Contractor (RBC) has been investigated. Preliminary batch experiments in a RBC indicate a first-order removal kinetics. Variation in the dissolved oxygen concentration and E. coli counts over the depth of the RBC has been recorded and indicates that the RBC is not a completely mixed reactor. Therefore batch experiments were carried out in a beaker where the different operating conditions can be controlled. Factors affecting the removal of E. coli via a biofilm system as stirring, dissolved oxygen concentration, pH, and addition of cationic polymer were investigated. The results obtained indicated that the most important removal mechanism of E. coli in the biofilm is the adsorption process, followed by sedimentation. Die-off is a relatively minor removal mechanism in an RBC system. Higher removal rate of E. coli was observed in an aerobic compared to an anaerobic biofilm system. Variation of dissolved oxygen concentration (3.3-8.7 mgl(-1)) and pH-values between 6.5 and 9.3 did not exert any significant effect on the removal rate of the E. coli by the heterotrophic biofilm. A rapid adsorption of E. coli to the biofilm occurred during the first days after adding the cationic polymer, after which the adsorption slowed down.  相似文献   

16.
Cho M  Yoon J 《Water research》2007,41(4):741-746
Various methods, including bioluminescence assay, were investigated regarding their suitability for quantitatively evaluating the disinfection performance. Although bioluminescence assay itself has been widely reported as a rapid, easy and suitable method for analyzing live microorganisms, the limited sensitivity of its measurement (approximately 10(3)-10(4)cells/assay vial), which is insufficient for disinfection study, requires further study. Among three methods (amplifying by enzymatic method, membrane filtration, and amplification by culturing) examined for increasing the detection sensitivity, amplification by culturing showed the best performance as Escherichia coli was employed as an indicating microorganism. Even with a short culturing time of 4h, the detection limit of E. coli measurement was successfully improved 200-fold, and the analytical results were not dependent upon the state of E. coli growth (stationary state with E. coli stock suspension vs. growth state with E. coli). In addition, the analytical integrity of bioluminescence assay with culturing was further demonstrated in comparison with spread plate method as free chlorine and UV irradiation were employed in the disinfection study.  相似文献   

17.
The utility of chlorine residual and chlorine demand as a surrogate for microbial contamination in the water distribution system was evaluated. The chlorine demanded by and cell survival of pure culture suspensions of Escherichia coli, Staphylococcus epidermidis, and Mycobacterium aurum were quantified in solutions with initial free chlorine concentrations of 0.20, 0.40, and 0.80 mg/L. The chlorine demand increased with initial concentration of cells and free chlorine for all species. At equivalent initial cell concentrations, chlorine demand was greatest for M. aurum, followed by S. epidermidis and E. coli. The chlorine contact time required for a 3-log inactivation of E. coli, S. epidermidis, and M. aurum was calculated as 0.032+/-0.009, 0.221+/-0.080, and 42.9+/-2.71 mg min/L, respectively. The ultimate chlorine demand and cell survival were directly proportional. No chlorine demand was observed at cell concentrations less than 10(5)CFU/mL for E. coli or 10(4)CFU/mL for S. epidermidis. M. aurum demanded chlorine at all initial cell concentrations including 10(3)CFU/mL, which was the detection limit of the cell quantification assay. Chlorine demand was determined to be a suitable surrogate indicator of the organisms studied and its utility may be enhanced in locations of the water distribution system that maintain a higher free chlorine residual.  相似文献   

18.
This research project was initiated to refine the knowledge available on the treatment of rural municipal wastewater by constructed wetlands. To determine the treatment capacity of a constructed wetland system receiving municipal lagoon effluents, the wetland was monitored over one treatment season, from May 19 to November 3, 2000. The wetland system consisted of a three-cell free-surface wetland, phosphorus adsorption slag filters and a vegetated filter strip. Bimonthly water samples at the inlet and outlet of each component of the wetland system were analysed for biochemical oxygen demand, nitrate and nitrite, ammonia and ammonium, total Kjeldahl nitrogen (TKN), total suspended solids (TSS), total phosphorus (TP), ortho-phosphate (ortho-PO(4)), fecal coliforms (FCs) and Escherichia coli. The free-surface wetland cells treating the lagoon effluents achieved removals as follows: biochemical oxygen demand (34%), ammonia and ammonium (52%), TKN (37%), TSS (93%), TP (90%), ortho-PO(4) (82%), FCs (52%) and E. coli (58%). The wetland cells reduced total nitrogen, TP and biochemical oxygen demand to levels below the maximum permissible levels required for direct discharge to nearby receiving waters (TN<3.0 mg x L(-1), TP<0.3 mg x L(-1), BOD(5)<3.0 mg x L(-1)). The vegetated filter strip treating the effluents from the wetland cells achieved removals as follows: biochemical oxygen demand (18%), ammonia and ammonium (28%), TKN (11%), TSS (22%), TP (5%), FCs (28%) and E. coli (22%). It may therefore serve as an additional treatment stage further reducing the concentrations of these mentioned parameters. The slag filters reduced TP in the lagoon effluents by up to 99%, and, in this study, were concluded to be effective phosphorus adsorbers.  相似文献   

19.
Nitrification was developed within a biological filter to simultaneously remove biodegradable organic matter (BOM) and residual ammonia added to control bromate formation during the ozonation of drinking water. Testing was performed at pilot-scale using three filters containing sand and anthracite filter media. BOM formed during ozonation (e.g., assimilable organic carbon (396-572 microg/L), formaldehyde (11-20 microg/L), and oxalate (83-145 microg/L)) was up to 70% removed through biofiltration. Dechlorinated backwash water was required to develop the nitrifying bacteria needed to convert the residual ammonia (0.1-0.5 mg/L NH(3)-N) to nitrite and then to nitrate. Chlorinated backwash water resulted in biofiltration without nitrification. Deep-bed filtration (empty-bed contact time (EBCT) = 8.3 min) did not enhance the development of nitrification when compared with shallow-bed filtration (EBCT = 3.2 min). Variable filtration rates between 4.8 and 14.6 m/h (2 and 6 gpm/sf) had minimal impact on BOM removal. However, conversion of ammonia to nitrite was reduced by 60% when increasing the filtration rate from 4.8 to 14.6 m/h. The results provide drinking water utilities practicing ozonation with a cost-effective alternative to remove the residual ammonia added for bromate control.  相似文献   

20.
A high microbiological quality of drinking water must be ensured to protect public health. The filtration techniques that are used in treating drinking water play an important role; however, a biofilm can form on granular-media filters and the accumulated bacteria can slough off and enter the filtered water.
The aim of this research was to examine (a) the potential for biofilm formation and detachment from filter sand, and (b) the effect of different backwash regimes on biofilm removal. During the operation of the filter, bacteria became attached to the sand media, particularly in the top 30 mm of the filter bed. A water-only backwash at 20% and 40% bed expansion demonstrated poor removal of biofilm throughout the depth of the bed. Collapse-pulsing is a more efficient method and results in a reduction in the number of bacteria in the filtered water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号