首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly conducting and transparent thin films of tin-doped cadmium oxide were deposited on quartz substrate using pulsed laser deposition technique. The effect of growth temperature on structural, optical and electrical properties was studied. These films are highly transparent (78-89%) in visible region, and transmittance of the films depends on growth temperature. It is observed that resistivity increases with growth temperature after attaining minimum at 150 °C, while carrier concentration continuously decreases with temperature. The lowest resistivity of 1.96 × 10− 5 Ω cm and carrier concentration of 5.52 × 1021 cm3 is observed for the film grown at 150 °C. These highly conducting and transparent tin-doped CdO thin films grown via pulsed laser deposition could be an excellent candidate for future optoelectronic applications.  相似文献   

2.
ITO thin films were prepared by irradiating 2.45 GHz of microwave with an output power of 700 W using a commercial kitchen microwave oven. A substrate temperature went up and down rapidly between 100 and 650 °C in a minute by a dielectric loss of SnO2 layer pre-deposited on a glass substrate. We found that the electrical and optical properties of films were affected by the atmosphere in a microwave irradiation, while the sintering was completed within a few minutes. Although the electrical resistivity was not reduced below 5.0 × 10− 4 Ω·cm in this study, the results lead to the possibility of a practical rapid synthesis of ITO transparent conducting oxide films.  相似文献   

3.
The area of metal oxynitrides is poorly explored, and understanding of the fundamental mechanism that explains structural, mechanical, electrical, and optical properties is still insufficient. Therefore, the purpose of the present investigation is to analyze structural, electrical, and optical properties of ZrNxOy films deposited by reactive cathodic arc evaporation.Depending on the oxygen flow, cubic ZrN:O, monoclinic ZrO2:N, and tetragonal ZrO2:N phases films were prepared. The sheet resistance and the optical transmittance very much depend on the oxygen flow. Optical transparent ZrNxOy films with transmittance of 86% at 650 nm, the sheet resistance 1.1 · 103 Ω/sq, and the figure of merit 2 · 10− 4 Ω− 1 are deposited with the 60 sccm oxygen flow.  相似文献   

4.
New transparent conductive films, fluorine doped tin oxide (FTO) films coated on indium-tin-oxide (ITO) films, were developed. These transparent conductive films were prepared by the spray pyrolysis deposition method at a substrate temperature of 350 °C in ITO and 400 °C in FTO. For ITO deposition, an ethanol solution of indium(III) chloride, InCl3·4H2O, and tin(II) chloride, SnCl2·2H2O [Sn/(In+Sn), 5 at.%] was sprayed on a Corning #7059 glass substrate (100×100×1.1 mm3). After the deposition, FTO films were consecutively deposited for protecting oxidation of ITO films. FTO deposition was carried out by an ethanol solution of tin(IV) chloride, SnCl4·5H2O within the saturated water solution of NH4F. These new transparent conductive films achieved the lowest resistivity of 1.4×10−4 Ω cm and the optical transmittance of more than 80% in the visible range of the spectrum. The electrical resistance of these new transparent conductive films increased by less than 10% even when exposed to high temperatures of 300-600 °C for 1 h in the air.  相似文献   

5.
Sol-gel method has been employed for the synthesis of nanocrystalline nickel oxide (NiO). The NiO powders were sintered at 400-700 °C for 1 h in an air. Thin films of sintered powders were prepared on glass substrate using spin coating technique and changes in the structural, morphological, electrical and optical properties were studied. The structural and microstructural properties of nickel oxide films were studied by means of X-ray diffraction and field emission scanning electron microscopy. Structural analysis shows that all the films are crystallized in the cubic phase and present a random orientation. Surface morphology of the nickel oxide film consists of nanocrystalline grains with uniform coverage of the substrate surface with randomly oriented morphology. The electrical conductivity showed the semiconducting nature with room temperature electrical conductivity increased from 10− 4 to 10− 2 (Ω cm) − 1 after sintering. The electron carrier concentration (n) and mobility (μ) of NiO films annealed at 400-700 °C were estimated to be of the order of 1.30 to 3.75 × 1019 cm− 3 and 1.98 to 4.20 × 10− 5 cm2 V− 1 s− 1.The decrease in the band gap energy from 3.86 to 3.47 eV was observed for NiO sintered between 400 and 700 °C. These mean that the optical quality of NiO films is improved by sintering.  相似文献   

6.
The compositional dependence of co-sputtered Ti-In-Zn-O film properties was investigated by means of a combinatorial technique. The X-ray diffraction result showed that the amorphous Ti-In-Zn-O films were fabricated regardless of the Ti contents [Ti / (Ti + In + Zn), at.%] of 4.5-34.4 at.%. The surface of amorphous Ti-In-Zn-O film is quite smooth. The obtained surface roughness (RRMS) values ranged from 0.5 nm to 1.7 nm. The superior resistivity of 3.8 × 10− 4 Ω cm and the transmittance of 92% (at 550 nm) was obtained for the Ti-In-Zn-O film with the elemental composition ratio of 18.6/68.5/12.9 at.% [Ti/In/Zn, at.%]. The indium quantity actually could be reduced to as high as ~ 15 at.% compared to that of commercial indium tin oxide or indium zinc oxide having similar resistivity value of ~ 10− 4 Ω cm. Overall, the amorphous Ti-In-Zn-O films may serve as a viable, low-cost alternative for flexible transparent conducting electrode applications.  相似文献   

7.
Al-doped transparent conducting zinc oxide (AZO) films, approximately 20-110 nm-thick, were deposited on glass substrates at substrate temperatures between 200 and 300 °C by pulsed laser deposition (PLD) using an ArF excimer laser (λ = 193 nm). When fabricated at a substrate temperature of 260 °C, a 40-nm-thick AZO film showed a low resistivity of 2.61 × 10− 4 Ω·cm, carrier concentration of 8.64 × 1020 cm− 3, and Hall mobility of 27.7 cm2/V·s. Furthermore, for an ultrathin 20-nm-thick film, a resistivity of 3.91 × 10− 4 Ω·cm, carrier concentration of 7.14 × 1020 cm− 3, and Hall mobility of 22.4 cm2/V·s were obtained. X-ray diffraction (XRD) spectra, obtained by the θ-2θ method, of the AZO films grown at a substrate temperature of 260 °C showed that the diffraction peak of the ZnO (0002) plane increased as the film thickness increased from 20 to 110 nm. The full-width-at-half-maximum (FWHM) values were 0.5500°, 0.3845°, and 0.2979° for film thicknesses of 20, 40, and 110 nm, respectively. For these films, the values of the average transmittance in visible light wavelengths (400-700 nm) were 95.1%, 94.2%, and 96.6%, respectively. Field emission scanning electron microscopy (FE-SEM) and atomic force microscopy (AFM) observations showed that even the 20-nm-thick films did not show island structures. In addition, exfoliated areas or vacant and void spaces were not observed for any of the films.  相似文献   

8.
Transparent conductive oxide/metal/oxide, where the oxide is MoO3 and the metal is Cu, is realized and characterized. The films are deposited by simple joule effect. It is shown that relatively thick Cu films are necessary for achieving conductive structures, what implies a weak transmission of the light. Such large thicknesses are necessary because Cu diffuses strongly into the MoO3 films. We show that the Cu diffusion can be strongly limited by sandwiching the Cu layer between two Al ultra-thin films (1.4 nm). The best structures are glass/MoO3 (20 nm)/Al (1.4 nm)/Cu (18 nm)/Al (1.4 nm)/MoO3 (35 nm). They exhibit a transmission of 70% at 590 nm and a resistivity of 5.0 · 10− 4 Ω cm. A first attempt shows that such structures can be used as anode in organic photovoltaic cells.  相似文献   

9.
This study addresses the electrical and optical properties as well as the surface structure after wet-chemical etching of mid-frequency magnetron sputtered aluminium doped zinc oxide (ZnO:Al) films on glass substrates from rotatable ceramic targets. Etching of an as-deposited ZnO:Al film in acid leads to rough surfaces with various feature sizes. The influence of working pressure and substrate temperature on the surface topography after etching was investigated. It was found that the growth model which Kluth et al. applied to films sputtered in radio frequency mode from planar ceramic target can be transferred to film growth from tube target. Furthermore, the influence of Ar gas flow and discharge power on the film properties was investigated. We achieved low resistivity of about 5.4 × 10− 4 Ω·cm at high growth rates of 120 nm·m/min. Finally, surface textured ZnO:Al films were applied as substrates for microcrystalline silicon solar cells and high efficiencies of up to 8.49% were obtained.  相似文献   

10.
High quality transparent conductive ZnO thin films with various thicknesses were prepared by pulsed filtered cathodic vacuum arc deposition (PFCVAD) system on glass substrates at room temperature.The high quality of the ZnO thin films was verified by X-ray diffraction and optical measurements. XRD analysis revealed that all films had a strong ZnO (200) peak, indicating c-axis orientation. The ZnO thin films are very transparent (92%) in the near vis regions. For the ZnO thin films deposited at a pressure of 0.086 Pa (6.5 × 10−4 Torr) optical energy band gap decreased from 3.21 eV to 3.19 eV with increasing the thickness. Urbach tail energy also decreased as the film thickness increased.Spectral dependence of the photoconductivity was obtained from measurements of the samples deposited at various thicknesses. Photoconductivities were observed at energies lower than energy gap which indicates the existence of energy states in the forbidden gap. Photoconductivities of ZnO thin films increase with energy of the light and reach its maximum value at around 2.32 eV. Above this value surface recombination becomes dominant process and reduces the photocurrent. The photoconductivity increases with decreasing the film thickness.  相似文献   

11.
The influence of deposition power, thickness and oxygen gas flow rate on electrical and optical properties of indium tin oxide (ITO) films deposited on flexible, transparent substrates, such as polycarbonate (PC) and metallocene cyclo-olefin copolymers (mCOC), at room temperature was studied. The ITO films were prepared by radio frequency magnetron sputtering with the target made by sintering a mixture of 90 wt.% of indium oxide (In2O3) and 10 wt.% of tin oxide (SnO2). The results show that (1) average transmission in the visible range (400-700 nm) was about 85%-90%, and (2) ITO films deposited on glass, PC and mCOC at 100 W without supplying additional oxygen gas had optimum resistivity of 6.35 × 10−4 Ω-cm, 5.86 × 10−4 Ω-cm and 6.72 × 10−4 Ω-cm, respectively. In terms of both electrical and optical properties of indium tin oxide films, the optimum thickness was observed to be 150-300 nm.  相似文献   

12.
In this study, transparent conducting Al-doped zinc oxide (AZO) films with a thickness of 150 nm were prepared on Corning glass substrates by the RF magnetron sputtering with using a ZnO:Al (Al2O3: 2 wt.%) target at room temperature. This study investigated the effects of the post-annealing temperature and the annealing ambient on the structural, electrical and optical properties of the AZO films. The films were annealed at temperatures ranging from 300 to 500 °C in steps of 100 °C by using rapid thermal annealing equipment in oxygen. The thicknesses of the films were observed by field emission scanning electron microscopy (FE-SEM); their grain size was calculated from the X-ray diffraction (XRD) spectra using the Scherrer equation. XRD measurements showed the AZO films to be crystallized with strong (002) orientation as substrate temperature increases over 300 °C. Their electrical properties were investigated by using the Hall measurement and their transmittance was measured by UV-vis spectrometry. The AZO film annealed at the 500 °C in oxygen showed an electrical resistivity of 2.24 × 10− 3 Ω cm and a very high transmittance of 93.5% which were decreased about one order and increased about 9.4%, respectively, compared with as-deposited AZO film.  相似文献   

13.
Heavily doped epitaxial ZnO:Al and Zn1−xMgxO:Al films were grown by radio frequency magnetron sputtering onto single crystalline substrates (sapphire, MgO, silicon) and characterized by structural and electrical measurements. It is the aim of this investigation to better understand the carrier transport and the doping mechanisms in heavily doped transparent conducting oxide (TCO) films. It was found that the crystallographic film quality determines only partly the mobilities and the carrier concentrations: ZnO:Al films on a-plane (110) sapphire and on MgO (100) exhibit the highest mobilities. The oxygen partial pressure during the deposition from ceramic targets is more important influencing especially the carrier concentration N of the films. Though the films grew epitaxially grain boundaries are still existent, which reduce the mobility due to electrical grain boundary barriers for N < 3 · 1020 cm− 3. From annealing experiments the role of point defects and dislocations for the carrier transport could be estimated. For carrier concentrations above 3 · 1020 cm− 3 ionized impurity scattering limits the mobility, which is in agreement with our earlier review [K. Ellmer, J. Phys. D: Appl. Phys. 34 (2001) 3097].  相似文献   

14.
A home-made radio frequency magnetron sputtering is used to systematically study the structural, electrical, and optical properties of aluminum doped zinc oxide (ZnO:Al) thin films. The intensity of the (002) peak exhibits a remarkable enhancement with increasing film thickness. Upon optimization, we achieved low resistivity of 4.2 × 10− 4 Ω cm and high transmittance of ~ 88% for ZnO:Al films. Based on the present experimental data, the carrier transport mechanism is discussed. It is found that the grain boundary scattering needs to be considered because the mean free path of free carrier is comparable to the grain size. The 80 nm-ZnO:Al thin films are then deposited onto low-frequency inductively coupled plasma fabricated silicon solar cells to assess the effect of ZnO:Al thin films on the performance of the solar cells. Optimized ZnO:Al thin films are identified as transparent and conductive oxide thin film layers.  相似文献   

15.
Cetyltrimethyl ammonium bromide (CTAB) templated mesoporous indium tin oxide (ITO) thin films were deposited on quartz plates by an evaporation-induced self-assembly (EISA) process using a dip coating method. The starting solution was prepared by mixing indium chloride, tin chloride, and CTAB dissolved in ethanol. Five to fifty mole percent Sn-doped ITO films were prepared by heat-treatment at 400 °C for 5 h. The structural, adsorptive, electrical, and optical properties of mesoporous ITO thin films were investigated. Results indicate that the mesoporous ITO thin films have an ordered two-dimensional hexagonal (p6mm) structure, with nanocrystalline domains in the inorganic oxide framework. The continuous thin films have highly ordered pore sizes (>20 Å), high Brunauer-Emmett-Teller (BET) surface area up to 340 m2/g, large pore volume (>0.21 cm3/g), outstanding transparency in the visible range (>80%), and show a minimum resistivity of ρ = 1.2 × 10−2 Ω cm.  相似文献   

16.
Yanwei Huang 《Thin solid films》2010,518(8):1892-8340
Tungsten-doped tin oxide (SnO2:W) transparent conductive films were prepared on quartz substrates by pulsed plasma deposition method with a post-annealing. The structure, chemical states, electrical and optical properties of the films have been investigated with tungsten-doping content and annealing temperature. The lowest resistivity of 6.67 × 10− 4 Ω cm was obtained, with carrier mobility of 65 cm2 V− 1 s− 1 and carrier concentration of 1.44 × 1020 cm− 3 in 3 wt.% tungsten-doping films annealed at 800 °C in air. The average optical transmittance achieves 86% in the visible region, and approximately 85% in near-infrared region, with the optical band gap ranging from 4.05 eV to 4.22 eV.  相似文献   

17.
Zinc oxide (ZnO) and indium doped ZnO (IZO) thin films with different indium compositions were grown by pulsed laser deposition technique on corning glass substrate. The effect of indium concentration on the structural, morphological, optical and electrical properties of the film was studied. The films were oriented along c-direction with wurtzite structure and highly transparent with an average transmittance of more than 80% in the visible wavelength region. The energy band gap was found to decrease with increasing indium concentration. High transparency makes the films useful as optical windows while the high band gap values support the idea that the film could be a good candidate for optoelectronic devices. The value of resistivity observed to decrease initially with doping concentration and subsequently increases. IZO with 1% of indium showed the lowest resistivity of 2.41 × 10−2 Ω cm and large transmittance in the visible wavelength region. Especially 1% IZO thin film was observed to be a suitable transparent conducting oxide material to potentially replace indium tin oxide.  相似文献   

18.
Zinc oxide (ZnO) films have been electrodeposited from an aqueous solution containing 0.1 M zinc nitrate as the electrolyte with pH around 5±0.1. The deposition was carried out by galvanostatic reduction with an applied cathodic current density in the range between 5 and 20 mA cm−2. The influence of bath composition on the preparation of ZnO films is studied. The effects of zinc nitrate concentration and cathodic current density on the deposition rate of ZnO films were also studied. An optimum current density of 10 mA cm−2 is identified for the growth of ZnO film with improved crystallinity and optical transmittance. The crystalline structure of the deposits studied by X-ray diffraction reveals the possibility of growing hexagonal ZnO films under suitable electrochemical conditions. The surface morphological studies by scanning electron micrographs revealed the presence of nodular appearance for films deposited at 800 °C bath temperatures.  相似文献   

19.
Recently, transparent conducting oxide thin films have attracted attention for the application to transparent conducting electrodes. In this work, we evaluated the uniformity of electrical, optical and structural properties for gallium doped zinc oxide thin films prepared on the 10 × 10 cm2 silica glass substrate by pulsed laser deposition. The resistivity, carrier concentration, mobility, bonding state and atomic composition of the film were uniform along in-plane and depth direction over the 10 × 10 cm2 area of the substrate. The film showed the average transmittance of 81-87%, resistivity of 1.4 × 10− 3 Ω cm, carrier concentration of 9.7 × 1020/cm3 and mobility of 5 cm2/Vs in spite of the amorphous X-ray diffraction pattern. The gradual thickness distribution was found, however, the potential for large-area and low temperature deposition of transparent conducting oxide thin film using pulsed laser deposition method was confirmed.  相似文献   

20.
High-quality Al-doped zinc oxide (AZO) thin films have been deposited on quartz substrates by radio-frequency magnetron sputtering at room temperature for thin film solar cell applications as transparent conductive oxide (TCO) electrode layers. Effects of post-deposition annealing treatment in pure nitrogen and nitrogen/hydrogen atmosphere have been investigated. Annealing treatments were carried out from 300 °C to 600 °C for compatibility with typical optoelectronic device fabrication processes. A series of characterization techniques, including X-ray diffraction, scanning electron microscopy, Hall, optical transmission, and X-ray photoelectron spectroscopy has been employed to study these AZO materials. It was found that there were significant changes in crystallinity of the films, resistivity increased from 4.60 × 10− 4 to 4.66 × 10− 3 Ω cm and carrier concentration decreased from 8.68 × 1020 to 2.77 × 1020 cm− 3 when annealing in 400 °C pure nitrogen. Whereas there were no significant changes in electrical and optical properties of the AZO films when annealing in 300-500 °C nitrogen/hydrogen atmosphere, the electrical stability of the AZO films during the hydrogen treatment is attributed to both desorption of adsorbed oxygen from the grain boundaries and production of additional oxygen vacancies that act as donor centers in the films by removal of oxygen from the ZnO matrix. These results demonstrated that the AZO films are stably suited for TCO electrodes in display devices and solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号