首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 46 毫秒
1.
基于势概率假设密度滤波的检测前跟踪新算法   总被引:2,自引:0,他引:2  
基于势概率假设密度滤波(Cardinalized Probability Hypothesis Density, CPHD)检测前跟踪(Track before detect, TBD)算法能有效解决未知目标数的弱小目标检测跟踪.文章深入研究了CPHD算法, 从标准CPHD滤波的粒子权重更新出发, 结合检测前跟踪的实际, 合理地推导出CPHD-TBD算法的粒子权重更新表达式; 分析了CPHD滤波目标势分布的物理意义, 实现了目标势分布更新计算在检测前跟踪的应用.将CPHD滤波和TBD进行有效结合, 提出了基于势概率假设密度滤波的检测前跟踪算法, 并给出其详细实现步骤.仿真实验证明提出的CPHD-TBD算法与现有概率假设密度检测前跟踪(PHD-TBD)算法相比, 能更详细地传递目标分布信息, 从本质上改变了PHD-TBD对目标数估计的方式, 能更准确稳定估计目标数, 实现了对目标的发现和状态准确估计, 性能明显更优.  相似文献   

2.
实现目标数目未知且可变条件下的多目标检测与跟踪是个极具挑战性的问题,在信噪比较低的情况下更是如此。针对这一问题,该文提出一种基于点扩散模型的多目标检测前跟踪改进算法。该算法在序贯蒙特卡罗概率假设密度(SMC-PHD)滤波框架下实现,通过自适应粒子产生机制完成新生目标在像平面中的初始定位,并根据目标在图像中可能出现的位置对全体粒子集进行有效子集分割和快速权值估算,最后利用动态聚类方法完成多目标状态的准确提取。仿真结果表明,该方法有效改善了多目标检测前跟踪的估计性能,并大大提高了算法执行效率。  相似文献   

3.
在杂波背景条件下,现有的基于概率假设密度(PHD)滤波的粒子滤波检测前跟踪(TBD)算法,存在对密集多目标数目估计不准,使用粒子数目较多会造成维数灾难的问题。因此,该文引入两层粒子的概念,将基于平行分割(PP)理论的辅助粒子滤波(APF)应用于基于概率假设密度的检测前跟踪 (PHD-TBD)算法中,提出基于概率假设密度滤波的平行分割辅助粒子滤波检测前跟踪(APP-PF-PHD-TBD)算法以提高目标数目及状态估计精度。仿真实验证明,相对于现有基于PHD的粒子滤波检测前跟踪算法,该算法在目标数目和状态估计精度上具有显著的性能优势,在密集目标场景下,优势尤为突出。最后,利用导航雷达实测所得海杂波背景数据证明,该算法在应用中性能更加优异。   相似文献   

4.
针对在低信噪比目标检测问题中,基于PHD的粒子滤波检测前跟踪算法(PHD-TBD)存在目标位置估计误差较大的缺陷,提出一种结合粒子群优化算法的基于PHD的粒子滤波检测前跟踪方法(PSO-PHD-TBD)。该算法在滤波预测和更新步骤之间加入基于NSGA-Ⅱ的多目标粒子群优化算法,结合量测信息将预测完成的粒子集的分布进行优化,将所有粒子转移到后验概率密度较大的区域,进而改善了多目标位置估计的性能;然后使用基于密度聚类的DBSCAN算法对粒子聚类,提取目标状态。仿真实验表明,在不同信噪比条件下,PSO-PHD-TBD在多目标数目估计情况与PHD-TBD算法一致,而位置估计精度明显优于PHD-TBD算法。  相似文献   

5.
多传感器情况下的多目标概率假设密度(PHD)滤波是建立在假设模型上实现的。该文用随机有限集(RFS)方法描述多目标状态空间和传感器量测空间,分析了多传感器通用假设模型下的探测概率、似然函数和杂波分布,在此基础上利用概率产生泛函(PGFL)推导出了多传感器PHD滤波递归式,进而提出粒子标记法多传感器贯序蒙特卡洛PHD(SMC-PHD)滤波等价实现算法,降低了多传感器PHD滤波的计算复杂度。最后给出了算法的具体实现,得到了良好的多目标数目和可跟踪多目标状态的估计。  相似文献   

6.
基于概率假设密度粒子滤波的多目标检测前跟踪方法(PF-PHD-TBD)存在目标数目估计不准确、状态估计精度不高等问题。借鉴Rao-Blackwellised粒子滤波(RBPF)将目标的状态空间进行降维分解,分别采用线性与非线性滤波器进行跟踪的思想,在PF-PHD-TBD的预测与更新过程中采用RBPF方法,以最优卡尔曼滤波对目标速度分量进行处理,以粒子滤波对位置分量进行处理,显著降低了运算复杂度,相比仅使用粒子滤波时过分依赖目标位置信息的缺点,充分利用了位置与速度之间的关联特性,提高了目标数目估计的准确度和状态估计的精度。最后用仿真实验验证了所提方法的有效性。  相似文献   

7.
提出一种粒子概率假设密度(Probability Hypothesis Density,PHD)新生粒子采样新方法.以混合高斯分布和均匀分布分别对新生粒子位置和速度分量进行采样,将采样过程置于滤波更新之后,通过最大似然检验多目标状态估计技术提取源于已知目标的量测,避免对这些量测进行新生粒子采样,有效降低粒子数和滤波计算量.结果表明:基于新生粒子采样新机制的粒子PHD滤波,相比于标准方法,在降低计算量的同时提高了多目标状态估计精度.  相似文献   

8.
陈里铭  陈喆  殷福亮  侯代文 《信号处理》2012,28(9):1209-1218
针对多说话人跟踪的非线性系统模型,提出了一种基于数值积分卡尔曼-概率假设密度滤波的多说话人跟踪方法。该方法采用麦克风阵列的时间延迟估计作为观测数据,利用具有三次代数精度的球面-径向数值积分准则计算非线性系统贝叶斯滤波器中的多维积分,通过数值积分卡尔曼滤波和概率假设密度滤波对后验多说话人状态的一阶统计量进行估计,并通过递推更新得到说话人状态信息,实现非线性高斯系统的多说话人跟踪。该方法无需求解非线性系统函数的雅克比矩阵,且计算量较小。仿真实验分析了检测概率、虚警点数目、采样周期、信噪比以及混响时间变化时跟踪算法的性能。实验结果表明,该方法降低了系统模型非线性对滤波算法的影响,增强了跟踪算法的鲁棒性,提高了说话人状态和数目的估计精度。   相似文献   

9.
针对扩展目标跟踪检测问题,把粒子滤波与检测前跟踪算法相结合应用于扩展目标。把目标强度和空间长度引入状态向量,解决粒子滤波易发散的缺点,实现对扩展目标的有效跟踪检测。最后,在对目标有效检测的基础上,对目标强度和空间长度进行估计。仿真表明,该算法能够较好地跟踪和检测扩展目标,并能有效估计目标强度和扩展长度。  相似文献   

10.
欧阳成  陈晓旭  华云 《雷达学报》2013,2(2):239-246
最适高斯近似概率假设密度滤波是一种新颖的多机动目标跟踪算法。然而,该算法存在模型概率先验固化问题,即在计算模型概率的过程中量测信息不起作用。针对以上问题,该文提出一种改进算法,通过引入模型概率更新过程,将后验量测信息加入模型概率的计算式中,根据似然函数在多个运动模型之间进行软切换,进而实现对多个机动目标的有效跟踪。实验结果表明,改进算法能够有效解决模型概率先验固化问题,在目标数估计和滤波精度方面均优于传统算法,具有良好的工程应用前景。  相似文献   

11.
Probability Hypothesis Density (PHD) filtering approach has shown its advantages in tracking time varying number of targets even when there are noise, clutter and misdetection. For linear Gaussian Mixture (GM) system, PHD filter has a closed form recursion (GMPHD). But PHD filter cannot estimate the trajectories of multi-target because it only provides identity-free estimate of target states. Existing data association methods still remain a big challenge mostly because they are computationally expensive. In this paper, we proposed a new data association algorithm using GMPHD filter, which significantly alleviated the heavy computing load and performed multi-target trajectory tracking effectively in the meantime.  相似文献   

12.
经典序贯蒙特卡罗概率假设密度(Sequential Mote Carlo Probability Hypothesis Density, SMC-PHD)滤波中, 将目标状态转移密度函数做为建议密度函数, 没有利用当前观测信息, 导致大部分预测粒子状态偏离目标真实状态, 粒子退化严重.针对上述问题, 提出利用均方根容积卡尔曼滤波产生建议密度函数, 对其进行采样得到预测粒子状态, 该方法有严格理论基础, 能有效减轻SMC-PHD滤波中的粒子退化, 且适用性很强.仿真实验对比了该算法、经典SMC-PHD和基于无迹卡尔曼的SMC-PHD算法的跟踪性能, 验证了该方法无论对势估计还是对目标状态估计的精度都优于其他两种算法.  相似文献   

13.
We address the recursive computation of the filtering probability density function (pdf) pn|n in a hidden Markov chain (HMC) model. We first observe that the classical path pn−1|n−1pn|n−1pn|n is not the only possible one that enables to compute pn|n recursively, and we explore the direct, prediction-based (P-based) and smoothing-based (S-based) recursive loops for computing pn|n. We next propose a common methodology for computing these equations in practice. Since each path can be decomposed into an updating step and a propagation step, in the linear Gaussian case these two steps are implemented by Gaussian transforms, and in the general case by elementary simulation techniques. By proceeding this way we routinely obtain in parallel, for each filtering path, one set of Kalman filter (KF) equations and one generic sequential Monte Carlo (SMC) algorithm. Finally we classify in a common framework four KF (two of which are original), which themselves can be associated to four generic SMC algorithms (two of which are original). We finally compare our algorithms via simulations. S-based filters behave better than P-based ones, and within each class of filters better results are obtained when updating precedes propagation.  相似文献   

14.
The particle Probability Hypotheses Density (particle-PHD) filter is a tractable approach for Random Finite Set (RFS) Bayes estimation, but the particle-PHD filter can not directly derive the target track. Most existing approaches combine the data association step to solve this problem. This paper proposes an algorithm which does not need the association step. Our basic ideal is based on the clustering algorithm of Finite Mixture Models (FMM). The intensity distribution is first derived by the particle-PHD filter, and then the clustering algorithm is applied to estimate the multitarget states and tracks jointly. The clustering process includes two steps: the prediction and update. The key to the proposed algorithm is to use the prediction as the initial points and the convergent points as the estimates. Besides, Expectation-Maximization (EM) and Markov Chain Monte Carlo (MCMC) approaches are used for the FMM parameter estimation.  相似文献   

15.
Bayesian multi-target filter develops a theoretical framework for estimating the full multi-target posterior which is intractable in practice. The probability hypothesis density (PHD) is a practical solution for Bayesian multi-target filter which propagates the first order moment of the multi-target posterior instead of the full version. Recently, the Gaussian Mixture PHD (GM-PHD) has been proposed as an implementation of the PHD filter which provides a close form solution. The performance of this filter degrades when targets are moving near each other such as crossing targets. In this paper, we propose a novel approach called penalized GM-PHD (PGM-PHD) filter to improve this drawback. The simulation results provided for various probabilities of detection, clutter rates, targets velocities and frame rates indicate that the proposed method achieves better performance compared to the GM-PHD filter.  相似文献   

16.
一种改进的CPHD多目标跟踪算法   总被引:3,自引:1,他引:3  
CPHD(Cardinalized Probability Hypothesis Density)滤波是一种杂波环境下可变目标数的多目标跟踪算法,该文针对算法中存在的目标漏检问题提出一种改进算法,该算法在高斯混合框架下实现贝叶斯递归,通过对各个高斯分量进行标记,对目标进行航迹关联,在此基础上对修剪合并后各个高斯分量的权值进行两次分配。首先对超过检测门限的高斯分量权值进行分配,有效解决了目标漏检问题,然后基于一个目标只可能产生一个观测的事实进行第2次分配,改善了目标发生交叉时的算法性能。实验结果表明,所提方法在多目标状态估计和航迹维持方面均优于普通的CPHD算法。  相似文献   

17.
PHD粒子滤波中目标状态提取方法研究   总被引:1,自引:0,他引:1  
唐续  魏平  陈欣 《电子与信息学报》2010,32(11):2691-2694
采用概率假设密度(PHD)粒子滤波进行多目标跟踪时,各时刻的目标状态表现为大量的加权粒子,需以一定方法从该粒子近似中提取出来。该文提出一种增强的目标状态提取方法,先以k-means算法对粒子进行空间分布的聚类,再于各类中寻找粒子权的峰值位置作为目标状态的估计。仿真结果表明:由于综合利用了粒子的权值和空间分布信息,该算法具有比现有算法更小的目标状态估计误差。  相似文献   

18.
对于目标跟踪系统,当观测不确定性相对系统不确定性较大时,如果采用EKF,UKF算法,由于概率密度函数(PDF)由高斯分布近似使真实的分布结构扭曲,导致系统性能下降或发散,采用粒子滤波时,因为系统不确定性相对观测不确定性较小,所以重采样会使粒子间的独立性消失,导致系统性能下降。为了提高目标跟踪的精度,该文给出一种SMCEKF及SMCUKF滤波算法,在SMC(Sequential Monte Carlo)算法中分别引入EKF及UKF,由独立滤波器更新和传播的随机采样点和相应权重来表示状态的PDF,由于初值和滤波都是独立的,所以确保了表示PDF的随机样值的独立性,在滤波器个数较少、计算量较小的情况下使滤波性能得到提高。文中给出了理论分析和仿真实例证明算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号