首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
以SiC为基体,Y_2O_3和Al_2O_3为烧结助剂,氮化硼纳米管(BNNTs)为增韧补强剂,采用喷雾造粒和干压成型方法,通过真空无压烧结工艺制备了BNNTs/SiC陶瓷复合材料。讨论BNNTs添加量和烧结工艺对BNNTs/SiC陶瓷复合材料的致密度、微观结构和力学性能的影响。实验结果表明:采用单因素法得到BNNTs的最佳添加量为1.5 wt.%和压制压力为100 MPa,确定了最佳烧成制度为:最高温度2050℃,保温时间2.5 h。采用阿基米德排水法测试样品密度,其相对密度达到99.0%,通过三点弯曲法和压痕法分别测试了样品的抗弯强度、断裂韧性和维氏硬度。BNNTs/SiC的抗弯强度、断裂韧性和维氏硬度分别达到了546.3 MPa、6.53 MPa·m~(1/2)和26.8 GPa。  相似文献   

2.
为了研究压电陶瓷颗粒对结构陶瓷力学性能的影响,把不同的压电陶瓷 颗粒加入到Al2O3结构陶瓷,发现LiTaO3与Al2O3在烧结时能稳定共存,烧结温度高于1400℃时,LiTaO3发生化,冷却后呈网状分布在AlO3基体晶界;低于1400℃烧结,LiTaO3颗粒弥散分布在Al2O3基体中,采用200MPa冷等静压成型,1300℃(保温3小时)空气气氛下无压烧结,最后于1300℃,150MPa(保温保压1h)氩气气氛下热等静压制备了LiTaO3/Al2O3陶瓷复合材料,对其显微结构与力学性能进行了研究,结果表明,LiTaO3体积分数为5%的陶瓷复合材料具有最高的抗弯强度与断裂韧性值,分别达到438.7MPa和5.4MPa.m^1/2,电畴运动和/或压电 应引起的能量耗散是一种新的陶瓷强韧化机制。  相似文献   

3.
以纳米SiB6颗粒为增强相,YAG为烧结助剂,采用无压液相烧结技术制备了SiC/纳米SiB6复合陶瓷,主要研究两步烧结对复合陶瓷烧结特性和力学性能的影响。研究结果表明,两步烧结对复合陶瓷的烧结性能和力学性能有一定的影响。第一步烧结温度由1850℃升至1900℃,SiC/纳米SiB6复合陶瓷的收缩率、失重率和相对密度增加,抗弯强度和维氏硬度整体下降;而第二步烧结温度由1850℃升高到1900℃,复合陶瓷失重率增加,收缩率和相对密度下降,抗弯强度和维氏硬度均有所提高。  相似文献   

4.
孙翔  王志  徐秋红  赵军 《中国陶瓷》2008,44(5):31-34
采用正交设计方法研究了莫来石纤维(MF),纳米氧化锆,烧结温度及保温时间对MF/Al2O3复合材料力学性能的影响机制。结果表明:MF对复合材料抗弯强度的影响最大,同时也影响材料的断裂韧性,烧成温度对体积密度影响最大,纳米ZrO2对材料维氏硬度的影响最大,所以通过控制MF和纳米ZrO2粉的含量和烧结温度,可以改善复合材料显微结构,提高材料的力学性能。  相似文献   

5.
刘增 《耐火与石灰》2012,37(5):44-48
利用无压烧结技术制备Al2O3-SiC陶瓷复合材料,并在烧结过程中使用MgO、TiO2、Y2O3等材料作为添加剂。本文研究了添加剂对复合材料的致密度和硬度的影响。采用溶胶-凝胶法使用AlCl3、TEOS、蔗糖和作为前驱体分离出α-Al2O3和β-SiC纳米颗粒。在氮气环境下无压烧结的温度为1 600℃和1 630℃。添加5%(体积)SiC阻碍了Al2O3复合材料的密实化。相比之下,添加纳米MgO、TiO2后Al2O3-5%SiC(体积)复合材料的致密度提高,但Y2O3对复合材料的烧结后的硬度、致密度没影响。烧结温度为1 630℃时复合材料达到最大致密度(97%)。在1 630℃下烧结材料的维氏硬度为17.7GPa。扫描电子显微镜(SEM)观察复合材料微观结构看到SiC颗粒均匀分布在晶粒边界。本文分别用X-射线衍射(XRD)、同步热分析仪(STA)和电子扫描显微镜(SEM)方法对材料的前驱体和合成物粉末进行了研究。  相似文献   

6.
Al2O3+5%SiC(体积比)复合陶瓷可以通过传统粉末加工工艺,用无压烧结来制备。工业用Al2O3SiC粉加水混碾成料浆,后凝固成颗粒状,经冷等静压制成生坯,在1750—1780℃氮气氛下无压烧结。1780℃可以接近全致密(〉99%)。加入少量MgO可以促进制品的低温烧成致密性。1780℃烧成后,维氏硬度和压痕断裂韧性分别为18GPa以及2.3MPa·m^1/2。透射电子显微镜显示,SiC粒子主要存在于基质颗粒的内部且在整个复合微结构分布良好。晶粒内的颗粒大小介于50~200nm之间,但晶粒间的颗粒较大,一般直径200~500nm。  相似文献   

7.
无压烧结制备Al2O3/SiC纳米复合陶瓷   总被引:2,自引:0,他引:2  
用沉淀法包裹微米级SiC颗粒,通过常压、埋烧制备Al2O3/SiC纳米复合陶瓷。通过XRD、TG和SEM等分析了煅烧和烧结过程中相组成的变化、烧成收缩和显微结构。结果表明:利用SiC粉埋烧及碳粉制造还原气氛,含8wt%SiC(平均粒径为5mm)的复合粉末经800℃煅烧、成型,试样于1550℃,2h烧结,可制备Al2O3/SiC纳米复合陶瓷,其相对体积密度达95.2%,在烧结过程中由SiC氧化形成的无定形SiO2及与基质氧化铝反应形成的莫来石前躯体可大大促进烧结。  相似文献   

8.
用真空热压工艺制备了Al2O3-SiC复相陶瓷.对热压烧结的纯Al2O3以及Al2O3-SiC复相陶瓷进行了摩擦磨损实验,研究了SiC添加量对复 相陶瓷摩擦磨损性能的影响.结果表明:在压力为25 MPa,1635℃热压烧结1h,当SiC的质量含量为5%时,Al2O3-SiC复相陶瓷的耐磨性最佳,虽摩擦系数最大(0.61,Al2O3则为0.46),但磨损率(WR)仪为5×10-4mm3/(N·m).Al2O3-SiC复合材料的磨损机理为脆性断裂引起的磨粒磨损,材料的 WR与断裂韧性(KIc)和Vickers硬度(Hv)的乘积(KIc1/2HV5/8)成反比.  相似文献   

9.
Mo含量对TiN-Al2O3复合材料性能和显微结构的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
以纯度均为99%(质量分数)的Al2O3微粉、TiN微粉及Mo微粉为原料,采用机械复合法制样并在高温真空气氛下无压烧结制备了TiN- Al2O3复合材料.研究了不同Mo含量对TiN- Al2O3复合材料性能及显微结构的影响.结果表明:Mo主要分布在TiN颗粒之间,使难烧结的TiN颗粒连成针柱状聚集体,从而Al2O3基体得到增强,复合材料的韧性得到提高.在复合材料中Mo微粉加入从0增加到9vol%时,其断裂韧性从4.28 MPa·m1/2增大到7.59 MPa·m1/2.随着Mo含量的增加,材料的显微维氏硬度呈现先增大后减小的趋势,在6vol%Mo时达到最大值,为2078.33.  相似文献   

10.
主要针对SiC基陶瓷作为高温玻璃夹具材料的可行性进行研究。采用机械化学结合无压烧结制备碳颗粒改性SiC陶瓷基复合材料(Cp/SiC),对其进行了XRD、SEM表征,分析了不同碳含量对C/SiC陶瓷烧结样品的体收缩率、密度、抗弯强度、显微硬度、断裂韧性和机加工性的影响。同时运用模糊数学理论,建立了模糊综合评价模型。我们偿试通过陶瓷的断裂韧性、硬度和抗弯强度等物理力学性能,对陶瓷的可加工性进行预测。结果表明:(1)烧结后的C/SiC复相陶瓷中的SiC发生了晶型转变,并且α-SiC比β-SiC的结晶度更好;(2)在碳含量为0~20%时,碳含量为10%的C/SiC复相陶瓷的显微组织最致密,而且碳与SiC的结合情况较好;(3)随着碳含量的增加,C/SiC烧结体的密度、体收缩率和抗弯强度都逐渐变小;(4)随着碳含量的增加,C/SiC复相陶瓷机加工性逐渐增强。  相似文献   

11.
以微米级Si3N4和h-BN粉末为原料,CaF2–Al2O3–Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的Si3N4/BN复相陶瓷。研究了CaF2添加量对Si3N4/BN复相陶瓷材料力学性能的影响,并通过X射线衍射和场发射扫描电镜分析了复相陶瓷的物相组成和显微组织。结果表明:随着CaF2添加量增加,制备的Si3N4/BN复相陶瓷材料气孔率逐渐增大,收缩率变小,相对密度减小。添加量为2%(质量分数)时,Si3N4/BN复相陶瓷的室温抗弯强度达145.5MPa。添加适量的CaF2可在Si3N4/BN复相陶瓷材料常压烧结过程中较大程度地破坏h-BN的卡片房式结构,将微米级的h-BN颗粒变成纳米级颗粒。  相似文献   

12.
以纳米Al2O3和TiN为原料,以SiO2为助烧剂,热压烧结后获得TiN-Al2O3复相陶瓷。TiN-Al2O3复相陶瓷具有较优异的力学性能:三点弯曲强度最高达到565.8MPa,断裂韧性在4~6MPa·m1/2之间。复相陶瓷中立方TiN均匀地分布在Al2O3基体中,TiN颗粒主要分布在Al2O3晶界处。当TiN颗粒的体积含量为5%时,TiN-Al2O3复相陶瓷的电阻率在1012~104Ω·cm范围内,其加载电压可达0.75kV/mm。  相似文献   

13.
采用真空热压烧结工艺制备了Al2O3/Ti(C,N)/ZrO2纳微米复合陶瓷工模具材料。用扫描电镜观察了其断口形貌和微观结构。分析了纳米ZrO2含量对复合材料力学性能和微观结构的影响。结果表明:当ZrO2体积分数为10%时,其抗弯强度、断裂韧性、硬度分别达到625MPa、8.58MPa·m^1/2。和16.37GPa。  相似文献   

14.
The paper describes the structure and properties of preceramic paper-derived Ti3Al(Si)C2-based composites fabricated by spark plasma sintering. The effect of sintering temperature and pressure on microstructure and mechanical properties of the composites was studied. The microstructure and phase composition were analyzed by scanning electron microscopy (SEM) and X-ray diffraction (XRD), respectively. It was found that at 1150 °C the sintering of materials with the MAX-phase content above 84 vol% leads to nearly dense composites. The partial decomposition of the Ti3Al(Si)C2 phase becomes stronger with the temperature increase from 1150 to 1350 °C. In this case, composite materials with more than 20 vol% of TiC were obtained. The paper-derived Ti3Al(Si)C2-based composites with the flexural strength > 900 MPa and fracture toughness of >5 MPa m1/2 were sintered at 1150 °C. The high values of flexural strength were attributed to fine microstructure and strengthening effect by secondary TiC and Al2O3 phases. The flexural strength and fracture toughness decrease with increase of the sintering temperature that is caused by phase composition and porosity of the composites. The hardness of composites increases from ~9.7 GPa (at 1150 °C) to ~11.2 GPa (at 1350 °C) due to higher content of TiC and Al2O3 phases.  相似文献   

15.
TiB2-SiC and TiB2-SiC-graphene nanoplatelets (GNPs) composites were prepared using field-assisted sintering technology at 2100 °C in argon atmosphere, and the influence of the SiC and different GNPs addition on microstructure development, mechanical and tribological properties has been investigated. Instrumented hardness, bending strength, chevron-notched fracture toughness and ball-on-flat tribological tests were used for the testing and characterization of the composites. The addition of SiC significantly improved the bending strength and elastic modulus with values of 601 MPa and 474 GPa, respectively, but decreased the fracture toughness with a value of 4.8 MPa.m1/2. The addition of GNPs has a positive effect on fracture toughness and flexural strength but a negative one on the hardness. The increasing amount of both GNPs has a positive influence on wear characteristics of the composites thanks to the described wear mechanisms.  相似文献   

16.
《Ceramics International》2022,48(9):12006-12013
B4C-based composites were synthesized by spark plasma sintering using B4C、Ti3SiC2、Si as starting materials. The effects of sintering temperature and second phase content on mechanical performance and microstructure of composites were studied. Full dense B4C-based composites were obtained at a low sintering temperature of 1800 °C. The B4C-based composite with 10 wt% (TiB2+SiC) shows excellent mechanical properties: the Vickers hardness, fracture toughness, and flexural strength are 33 GPa, 8 MPa m1/2, 569 MPa, respectively. High hardness and flexural strength were attributed to the high relative density and grain refinement, the high fracture toughness was owing to the crack deflection and uniform distribution of the second phase.  相似文献   

17.
无压烧结Al2O3/SiC纳米复相陶瓷的研究   总被引:12,自引:0,他引:12  
将粒径为30~35nm的β-SiC粉,加入亚微米尺寸的α-Al  相似文献   

18.
刘宁  文有强  顾雷  郭露村 《硅酸盐学报》2012,40(3):366-367,368,369,370,371,372
采用无压烧结工艺制备高比强度SiC/β-sialon复相陶瓷。研究了原料组成和第一阶段反应温度对合成β-sialon相的影响,分析了氧化物添加剂和第二阶段烧结温度对材料烧结性能和力学性能的影响。利用X射线衍射仪、扫描电子显微镜以及万能试验机表征样品的物相组成、微观结构和力学性能。结果表明:用10%(质量分数,下同)的苏州土部分替代Al2O3和SiO2能有效促进β-sialon相的生成,在1500℃保温2h合成出无杂相的β-sialon相;复合添加5%ZrO2和5%Y2O3可促进样品的烧结致密化。当温度为1650℃时,样品的体积密度为2.90g/cm3,抗弯强度和断裂韧性分别达到375MPa和3.24(MPa·m1/2),弯曲比强度为1.29×105(N·m)/kg,比Al2O3提高了40%以上。  相似文献   

19.
以微米级Si3N4和h-BN粉末为原料,Yb2O3-Al2O3-Y2O3为烧结助剂,采用常压烧结工艺制备了BN体积含量为25%的多孔Si3N4/25%h-BN复相陶瓷。研究了Yb2O3添加量对Si3N4/25%BN复相陶瓷力学性能的影响,通过X射线衍射和扫描电子显微镜分析了复相陶瓷的物相组成和显微结构。结果表明:随着Yb2O3添加量增加,制备的Si3N4/25%BN复相陶瓷的气孔率逐渐增大,收缩率变小,相对密度减小。Yb2O3添加量为2%(质量分数)时,Si3N4/25%BN复相陶瓷的气孔率为15.1%,相对密度为72.8%;当Yb2O3添加量提高至15%时复相陶瓷的气孔率增加至32.1%,相对密度则降至60.3%。同时随着Yb2O3添加量增加,复相陶瓷的室温抗弯强度先增大后减小,Yb2O3含量为4%时,室温抗弯强度呈现最大值,可达264.3MPa。  相似文献   

20.
为了提高Ti_3Al C_2陶瓷的力学性能,本研究以Ti C粉、Ti粉、Al粉和V2O5粉为起始反应原料,采用原位热压技术在1350°C下反应烧结合成出了(Ti,V)_3AlC_2/Al_2O_3复合材料。利用X-射线衍射和扫描电子显微技术对合成产物的物相和微观结构进行了表征,并分析了复合材料的合成机制。最后,对(Ti,V)_3AlC_2/Al_2O_3复合材料的力学性能进行了研究。测试结果表明:(Ti_(0.92),V_(0.08))_3Al C_2/10wt%Al_2O_3复合材料具有最佳的力学性能,其硬度、断裂韧性及抗弯强度分别为5.56 GPa、12.93 MPa·m~(1/2)和435 MPa,相比于单相Ti_3Al C_2材料分别提升了60%、108%和31%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号