首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为了解决推算强烈破坏煤取样过程中瓦斯损失量的问题,建立了一套具有脱气、充气、恒温和解吸测量功能的试验装置,模拟测试了强烈构造煤瓦斯解吸过程,根据模拟测定的解吸数据,构建了强烈破坏煤瓦斯解吸规律公式,确定了运用新建公式推算强烈破坏煤损失量时,煤样暴露时间应控制在3 min以内,此时的推算损失量误差小于10%.  相似文献   

2.
构造煤瓦斯解吸初期特征实验研究   总被引:20,自引:0,他引:20       下载免费PDF全文
利用自制的煤样瓦斯解吸试验装置,在恒温30 ℃、不同压力、不同粒度条件下,研究平顶山和鹤壁的原生结构煤和构造煤的瓦斯解吸初期速度和解吸量,分析构造煤瓦斯解吸初期的影响因素,建立构造煤瓦斯初期解吸数学模型。实验结果表明:与原生结构煤相比,构造煤瓦斯解吸初期速度更大,其初始解吸速度为1.23~4.20 mL/(g·min),是相同实验条件下原生结构煤的1.36~2.84倍,尤其在前1 min内差别较大;构造煤瓦斯解吸量是一条单调递增的幂函数曲线,0~10 min的瓦斯解吸规律具有分段性,可分为快速解吸段、缓慢解吸段和平稳解吸段,构造煤前10 min瓦斯解吸量可达1 h内解吸总量的60%。分析认为构造煤中大孔和过渡孔的发育程度决定了构造煤瓦斯初期特征;构造煤瓦斯解吸初速度随粒度的减小而增加,但是在极限粒度以下煤粒度对瓦斯初期解吸速度影响较小;瓦斯解吸初速度与吸附平衡压力呈幂指数关系;构造煤瓦斯解吸初期曲线符合文特式。  相似文献   

3.
通过对不同破坏程度、不同变质程度、不同压力、不同温度、不同水分的大质量构造煤的瓦斯解吸规律实验研究,得出单位质量构造煤的瓦斯解吸总量随破坏程度、温度、压力的增加而变大,随煤中水分、变质程度的增加而变小的规律。该结论为矿井瓦斯灾害的防治提供理论基础。  相似文献   

4.
金兵 《煤矿安全》2019,(4):10-13
通过改进的煤样瓦斯解吸装置,精确测定了不同平衡压力下构造煤与原生煤的恒温瓦斯解吸量与解吸速度数据,分析了构造煤的瓦斯解吸特征。实验结果表明:构造煤的瓦斯解吸量具有明显的分段特征,其初期瓦斯解吸量更大,第1 min内瓦斯解吸量可达120 min总解吸量的31.55%~38.07%,远高于同条件原生煤的10.94%~14.24%;构造煤的初始解吸速度可达10.11~15.75 mL/(g·min),是同条件下原生煤的的1.72~2.32倍,构造煤的初期解吸特征主要由第1 min内的解吸特性控制。通过现场数据分析了钻屑瓦斯解吸指标K_1随构造煤平均厚度变化情况,两者呈线性关系且显著正相关,说明在构造煤发育区域煤与瓦斯突出危险性显著增加。  相似文献   

5.
《煤矿安全》2016,(2):9-13
在系统采集西南地区典型矿井构造煤样的基础上,通过等温吸附解吸实验,探讨了不同变质变形条件下构造煤瓦斯特性。中高变质作用阶段,变质程度对瓦斯吸附的影响作用大于变形强度,无论变形强弱,低变质煤的吸附量均低于中高变质煤;在低阶煤阶段,影响甲烷吸附量的主控因素则为构造煤变形强度。解吸较好的样品主要为高变质或高变形构造煤,瓦斯解吸量和解吸应力敏感性符合文特式。瓦斯解吸初期应力敏感性强弱为:高变质弱变形煤中变质煤及高变质强变形煤低变质煤。  相似文献   

6.
《煤矿安全》2021,52(4):20-24,30
为了准确预测掘进落煤瓦斯涌出量,搭建了大质量瓦斯解吸实验系统,进行了不同瓦斯压力条件下瓦斯解吸实验,研究了余吾煤业3#煤瓦斯解吸规律,建立了掘进落煤瓦斯涌出量预测模型,对不同瓦斯压力在不同掘进速度的落煤瓦斯涌出量进行了预测,查明了影响掘进落煤瓦斯涌出量的主要因素。研究结果表明:余吾煤业3#煤瓦斯解吸采用对数函数公式具有较高的拟合精度,拟合参数A和B受到煤层瓦斯压力或瓦斯含量的控制,影响掘进落煤瓦斯涌出量的主要因素为煤层原始瓦斯压力或瓦斯含量、割煤速度及落煤停留时间。  相似文献   

7.
《煤炭技术》2021,40(9):126-130
为了研究构造煤的孔隙结构对瓦斯解吸特征的影响,选取了发耳煤矿和青龙煤矿的煤样,进行了压汞试验和瓦斯解吸试验,对构造煤和原生结构煤的孔隙结构及解吸特征进行了对比分析,结果表明:原生结构煤中的大孔和中孔的孔容含量约占总孔容的12.81%~12.19%,构造煤中的大孔和中孔的孔容含量约占总孔容的69.85%~82.15%,原生结构煤和构造煤的孔比表面积占比较高的都是微孔和小孔,表明构造煤结构变化主要体现在大孔和中孔的孔容占比增加;构造煤的初期瓦斯解吸速度和瓦斯解吸量明显大于原生结构煤,主要原因是构造煤的大孔和中孔的孔容含量增加,使瓦斯有了更多的渗流通道和储存空间,增加了瓦斯解吸速度。  相似文献   

8.
为了进一步研究煤层中瓦斯解吸扩散的特征及其规律,设计了等温瓦斯吸附解吸实验系统,该系统主要由温度控制系统,瓦斯吸附解吸系统和数据采集与处理系统3部分组成。通过自制煤样,实验研究了2种煤质、2种粒度的4种不同煤样在30℃恒定温度、不同吸附平衡压力点下的瓦斯解吸扩散规律。通过对比分析,提出了瓦斯累计解吸量与时间之间的关系式,建立的煤的瓦斯累计解吸量的数学模型,并分析了影响模型中各参数变化的因素。  相似文献   

9.
刘祥龙  陈绍杰 《煤矿安全》2014,(11):16-18,22
基于自制的煤体瓦斯吸附-解吸实验装置,实验室模拟了反转密封取样过程,开展了不同吸附平衡压力下和不同密封时间的瓦斯解吸实验。针对实验过程中的煤样瓦斯吸附平衡-卸压-密封过程,分析了煤样罐中的瓦斯压力变化。结果表明:卸压密封过程瓦斯压力逐渐增大,是一个由非平衡状态向吸附平衡状态转变的过程,理论上随着时间的延长,最终趋向于吸附平衡状态。密封取样的瓦斯解吸是非平衡状态下的瓦斯解吸过程,其初始瓦斯解吸量明显大于常规解吸的瓦斯解吸量,随着吸附平衡压力的增大和密封时间的增大,初始瓦斯解吸量越大,其解吸规律与常规解吸基本相似。  相似文献   

10.
构造煤分布规律对煤与瓦斯突出的控制   总被引:14,自引:0,他引:14       下载免费PDF全文
根据对华北366对主要生产矿井统计分析,得出构造煤的区域分布主要受构造控制,挤压构造带是构造煤主要分布区,其次是伸展构造带的边缘,伸展构造带的内部主要是原生结构煤分布区;构造煤的层域分布主要受煤厚控制,即构造煤主要发育在厚煤层中;构造煤最发育的区域和层位,煤与瓦斯突出也最严重。纵弯褶皱作用下构造煤主要形成在褶皱的翼部,断层作用下构造煤主要形成在断层的上盘,因此,褶皱的翼部和断层的上盘也是煤与瓦斯突出最严重的部位。  相似文献   

11.
依托自行设计加工的含瓦斯煤瓦斯解吸规律实验系统,以煤的瓦斯解吸动力学规律为理论基础,采用模拟测试和理论分析相结合的方法,在等温等压条件下对不同粒度煤样的瓦斯解吸规律进行了模拟测定。通过对实验数据的拟合分析,得出粒度对煤的瓦斯解吸规律的影响,最后对粒度对煤的瓦斯解吸规律的影响进行了理论分析。  相似文献   

12.
构造煤特征及其与瓦斯突出危险性的关系   总被引:1,自引:1,他引:1  
窦仲四  鲁玉芬  开明 《煤炭技术》2006,25(10):96-98
构造煤是发生煤与瓦斯突出的必要条件。13-1煤层是淮南煤田潘一井田的主采煤层,该煤层构造煤非常发育,通过计算构造煤在煤层中所占的比例和构造煤的厚度;分析构造煤的分层特征,研究该煤层的构造煤发育特征,并初步探讨了构造煤发育特征与瓦斯突出危险性之间的关系。  相似文献   

13.
为了分析煤与页岩中瓦斯解吸特性,以四川盆地龙马溪组黑色页岩和重庆南桐煤矿无烟煤为研究对象,利用瓦斯吸附/解吸装置,开展了不同温度条件下的瓦斯解吸实验,研究结果表明:瓦斯初始解吸速率极快,随着时间的增加,解吸速率逐渐减小,解吸量最终达到最大值;随着温度的增加,瓦斯最终解吸量增大,煤的解吸量增幅明显大于页岩;同等条件下煤在瓦斯解吸量和解吸时间上大于页岩,但页岩的瓦斯解吸速率大于煤。基于渗透模型,通过引入曲率的概念,将瓦斯解吸过程划分为急速解吸、快速解吸、缓慢解吸、极缓解吸4个阶段。  相似文献   

14.
通过对开元煤矿瓦斯情况的研究,对矿井瓦斯赋存的地质规律进行了分析,对煤气层资源量进行了预测,并提出了自己的建议.  相似文献   

15.
基于瓦斯解吸特性推算煤层瓦斯压力的方法   总被引:3,自引:0,他引:3  
为了能够准确快速确定煤层瓦斯压力,基于煤层瓦斯解吸特性提出了确定煤层瓦斯压力的新方法.通过对煤屑瓦斯扩散过程理论解的进一步分析得出煤层瓦斯压力与煤屑解吸对1~3mm粒径煤样具有确定关系.解吸测定,通过不同公式对解吸数据的拟合分析发现对数公式能够更好的拟合解吸曲线,从而确定对数公式为最佳拟合公式.对数公式中系数A能够表明煤样在不同瓦斯压力下解吸趋势的差异性,与瓦斯压力具有指数关系.并且在不同暴露时间下其数值可以保持在稳定值,可以利用系数A与瓦斯压力的关系进行煤层瓦斯压力的推算.  相似文献   

16.
在适宜的外界条件下,煤体中的吸附瓦斯迅速解吸为游离瓦斯后可释放出巨大的能量,从而产生强烈的气体动力效应。通过理论分析得出影响瓦斯解吸速度的重要因素——瓦斯的浓度梯度和孔壁产生的能垒。在一定的煤层条件下,吸附瓦斯浓度梯度取决于外部裂隙中高压瓦斯的释放速度,而孔壁的能垒与煤体的粒度关系密切。研究分析了不同吸附压力和煤样颗粒对瓦斯解吸特征的影响,得出瓦斯解吸速度和解吸量随孔隙压力和煤体破坏程度变化的规律。  相似文献   

17.
针对煤瓦斯的储集运移特性,提出了通过电化学强化煤瓦斯解吸渗透性以提高煤层瓦斯抽放率和抽放效果的研究思路。对电磁场和地电场强化煤瓦斯解吸渗透机理进行了分析,提出了电化学强化煤瓦斯解吸渗透的研究方法,并对其可行性进行了分析,为实现电化学强化煤瓦斯解吸渗透提供基础理论依据。  相似文献   

18.
为了获得常压环境下煤体瓦斯解吸释放趋向性规律,利用自主设计的瓦斯解吸参数测试系统装置,在环境温度15℃、瓦斯吸附平衡压力2.0 MPa条件下,开展了垂直、平行和斜交等不同层理面煤样的瓦斯常压解吸释放对比实验,结果表明:不同的解吸层理面对瓦斯解吸参数影响显著,斜交层理面煤样瓦斯最终累计解吸量分别是垂直层理煤样、平行层理煤样的1.2倍和1.7倍,且随着解吸时间的延长趋向性差异越明显。  相似文献   

19.
以平顶山低渗煤体为研究对象,研究了不同温度和瓦斯平衡压力对瓦斯的解吸速率的影响。在瓦斯解吸初期,温度和瓦斯平衡压力对解吸速率的影响程度不一,但在解吸基本平衡之后,瓦斯解吸速率随温度的增加呈正比例上升,且1.5~2.0 MPa瓦斯压力的影响程度比0.74~1.50 MPa瓦斯压力的影响程度大。  相似文献   

20.
注水对煤层吸附瓦斯解吸影响的试验研究   总被引:1,自引:0,他引:1  
水力化措施在煤矿开采中广泛应用,为了研究注水对煤层瓦斯解吸的影响,采用高压吸附-注水-解吸测试装置对不同吸附平衡压力和水分条件下煤对瓦斯的置换解吸量、卸压解吸量及总瓦斯解吸量进行了测试计算。结果表明:注水过程中及注水一段时间内煤样罐瓦斯压力呈现出继续增高的趋势,说明注入的水置换出了煤体吸附的瓦斯,且水分越高,置换解吸量越大,测试的最大置换量可达11.88 mL/g;卸压后,注水煤样的瓦斯解吸量减小,且水分越大,瓦斯解吸量降幅越大,降幅最大值可达68.29%;注水后煤的总解吸量增大,说明注水对试验煤样的瓦斯解吸起促进作用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号