首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The catalytic steam cracking (CSC) of heavy crude oil with high amount of sulfur (4.3 wt %) and high-boiling fractions (>500°C) is studied using Mo and Ni nanodispersed catalysts under static conditions (in an autoclave) at 425°C. Experiments on thermal cracking, steam cracking, and catalytic cracking without water are performed to compare and identify the features of CSC. The relationship between the composition and properties of liquid and gaseous products and process conditions, the type of catalyst, and water is studied. Using Ni catalyst in CSC raises the H: C ratio (1.69) in liquid products, compared to other types of cracking, but also increases the yield of coke and gaseous products, so the yield of liquid products falls. When Mo catalyst is used in CSC, low-viscosity semi-synthetic oil with a higher H: C ratio (1.70) and the lowest amount of sulfur in liquid products (2.8 wt %) is produced. XRF and HRTEM studies of the catalyst-containing solid residue (coke) show that under CSC conditions, nickel is present in the form of well-crystallized nanoparticles of Ni9S8 15–40 nm in size, while molybdenum exists in two phases: MoO2 and MoS2, the ratio between which depends on the conditions of the transformation of heavy crude oil. The findings indicate that CSC is a promising process for improving heavy crude oil.  相似文献   

2.
The process of heavy crude oil steam cracking using semi-flow (with respect to water) and steadystate regimes at 425°C without catalyst is investigated. It is established that in the case of a semi-flow regime, water acts predominantly as a physical agent facilitating the distillation of hydrocarbon fractions and thus preventing their transformation into petroleum coke. A reduction in coke yield is observed for a steady-state regime in comparison to a semi-flow regime; the introduction of water results in enhanced conversion of the high-boiling fraction and an increased yield of light fractions in the composition of liquid products. Based on the obtained data, it is concluded that water plays a positive role during the conversion of heavy crude oil, and that the steam cracking process is promising for production of lighter synthetic and/or semi-synthetic oils.  相似文献   

3.
催化剂对稠油水热裂解反应研究   总被引:4,自引:0,他引:4  
以富含镍的矿石为原料,制备了五种催化剂,确定了最佳催化剂。在此基础上研究了催化剂对稠油水热裂解反应的催化作用。考察了在注蒸汽条件下反应温度和催化剂添加量对稠油的粘度和平均分子质量的影响。实验结果表明,在注入蒸汽的条件下,辽河稠油可以发生水热裂解反应,高温下催化剂对水热裂解反应具有催化作用。探讨了催化剂对稠油水热裂解反应的催化机理。  相似文献   

4.
Various Ni‐Co bimetallic catalysts were prepared by incorporating sol‐gel and wet impregnation methods. A laboratory‐scale fixed‐bed reactor was employed to investigate their effects on hydrogen production from steam reforming of bio‐oil. The catalyst causes the condensation reaction of bio‐oil, which generates coke and inhibits the formation of gas at temperatures of 250 °C and 350 °C. At 450 °C and above the transformation of bio‐oil is initiated and gaseous products are generated. The catalyst also can promote the generation of H2 as well as the transformation of CO and CH4 and plays an active role in steam reforming of bio‐oil or gaseous products from bio‐oil pyrolysis. The developed 3Ni9Co/Ce‐Zr‐O catalyst achieved maximum hydrogen yield and lowest coke formation rate and provided a better stability than a commercial Ni‐based catalyst.  相似文献   

5.
CA-2000 FCC催化剂在ARGG装置上的应用   总被引:2,自引:0,他引:2  
姚日远  陈祥 《工业催化》2004,12(4):21-23
详细介绍了CA-2000流化催化裂化(FCC)催化剂在扬州石油化工厂采用中国石化石油化工科学研究院开发的ARGG技术的FCC装置上的应用情况。工业应用结果表明,CA-2000催化剂具有较强的重油转化能力,产品选择性好焦炭产率低,液态烃收率高,抗重金属污染能力较强,可以满足原油性能变差、重油掺炼比提高后工厂的实际生产要求。  相似文献   

6.
Regarding the growth of global energy consumption and the paucity of light crude oil,extracting and using heavy and extra heavy crude oil has received much more attention,but the application of this kind ofoil is complicated due to its very high molecular weight.High viscosity and low flowability complicate the transportation of heavy and extra heavy crude oil.Accordingly,it is essential to reduce the viscosity of heavy and extra heavy crude oil through in-situ operations or immediate actions after extraction to reduce costs.Numerical simulations are influential methods,because they reduce calculation time and costs.In this study,the cracking of extra heavy crude oil using computational fluid dynamics is simulated,and a unique kinetic model is proposed based on experimental procedures to predict the behavior of extra heavy crude oil cracking reaction.Moreover,the hydrodynamics and heat transfer of the system and influence of nanocatalysts and temperature on the upgrading of crude oil are studied.The geometry of a reactor is produced using commercial software,and some experiments are performed to examine the validity and accuracy of the numerical results.The findings reveal that there is a good agreement between the numerical and experimental results.Furthermore,to investigate the main factors affecting the process,sensitivity analysis is adopted.Results show that type of catalyst and concentration of catalyst are the parameters that influence the viscosity reduction of extra heavy crude oil the most.The findings further revealed that when using a 25 nm SiO2 nanocatalyst,a maximum viscosity reduction of 98.67% is observed at 623 K.Also,a catalyst concentration of 2.28wt% is best for upgrading extra heavy crude oil.The results obtained through sensitivity analysis,simulation model,and experiments represent effectual information for the design and development of high performance upgrading processes for energy applications.  相似文献   

7.
The effect of the composition of zeolite containing catalyst, the conditions of conducting the process, and the nature of oils on the distribution of target products during conversion under conditions of catalytic cracking is studied. The study is performed on bizeolite catalysts containing zeolites (ultrastable Y and ZSM-5 at different ratios) and on catalyst LUX containing18 wt % of zeolite Y in the HREY form. It is shown that the presence of zeolite ZSM-5 in the catalyst composition promotes the formation of olefines C2–C4. An increase in the severity of cracking process (elevated temperatures and catalyst: raw material ratios) improves the yield of gaseous products and coke with a simultaneous reduction in the yield of the gasoline fraction. The effect the nature of vegetable oils has is studied using the examples of palm, rapeseed, mustard, and sunflower oils. It is demonstrated that for the maximum yield of olefines C2–C4 and gasoline, we must use oils with elevated contents of saturated fatty acids. The regularities of the simultaneous cracking of sunflower oil and vacuum gas oil are studied. It is been found that upon simultaneous cracking, the total conversion of the mixed feedstock and yield of gasoline fraction increase; the maximum effect is attained with the addition of 3–10 wt % of vegetable oil.  相似文献   

8.
Biofuel production from vegetable oil is potentially a good alternative to conventional fossil derived fuels. Moreover, liquid biofuel offers many environmental benefits since it is free from nitrogen and sulfur compounds. Biofuel can be obtained from biomass (e.g. pyrolysis, gasification) and agricultural sources such as vegetable oil, vegetable oil sludge, rubber seed oil, and soybean oil. One of the most promising sources of biofuel is vegetable oil sludge. This waste is a major byproduct of vegetable oil factories. It consists of triglycerides (61%), free fatty acid (37%) and impurities (2%). The hydrocarbon chains of triglycerides and free fatty acid are mainly made up of C16 (30%) and C18 (36%) hydrocarbons. The others consist of C12-C17 hydrocarbon chains. Transesterification can help in converting vegetable oil sludge into biofuel. The disadvantage of this method is that a large amount of methanol is required. The alternative method for this conversion is catalytic cracking. The objective of this research is to evaluate and compare the pyrolysis process with cracking catalytic reaction of vegetable oil sludge by Micro-activity test MAT 5000 of Zeton-Canada.A ZSM-5/MCM-41 multiporous composite (MC-ZSM-5/MCM-41), was successfully synthesized using silica source extracted from rice husk. The material has the MCM-41 mesoporous structure, and its wall is constructed by ZSM-5 nanozeolite crystals. The porous system of the material includes pores of the following sizes: 5 Å (ZSM-5 zeolite), 40 Å (MCM-41 mesoporous material), and another porous system whose diameter is in the range of 100-500 Å (mesoporous system) formed by the burning of organic compounds that remain in the material during the calcination process. This pore system contributes to an increase in the catalytic performance of synthesized material.The results of vegetable oil sludge cracking reaction show that the product consists of fractions such as dry gas, liquefied petroleum gas (LPG), gasoline, light cycle oil (LCO), and (heavy cycle oil) HCO, which are similar to those of petroleum cracking process.MC-ZSM-5/MCM-41 catalyst is efficient in the catalytic cracking reaction of vegetable oil sludge as it has higher conversion and selectivity for LPG and gasoline products in comparison to the pyrolysis process. Product distribution (% of oil feed) of cracking reaction over MC-ZSM-5/MCM-41 is coke (3.4), total dry gas (7.0), LPG (31.1), gasoline (42.4), LCO (8.9), HCO (7.2); and that of pyrolysis are coke (19.0), total dry gas (9.3), LPG (16.9), gasoline (28.8), LCO (13.7), and HCO (12.3).These results have indicated a new way to use agricultural waste such as rice husk for the production of promising catalysts and the processing of vegetable oil sludge to obtain biofuel.  相似文献   

9.
注汽热采条件下稠油井下催化改质的研究进展   总被引:3,自引:0,他引:3  
李伟  朱建华 《现代化工》2005,25(10):25-29
对在注汽热采条件下稠油井下改质过程所用的供氢体、催化剂及改质条件进行了评述,结果表明,在注汽热采条件下井下稠油催化改质宜采用均相催化剂及液态供氢体,由于环己烷对稠油的催化降解作用可以发生在催化剂表面,有望成为稠油改质过程所需的经济型供氢体。而含油岩层中的矿物质对稠油井下改质过程具有催化作用,可以作为稠油井下改质过程的催化剂,使原油免受污染,且可简化操作。  相似文献   

10.
Reaction performance of FCC slurry catalytic cracking   总被引:1,自引:0,他引:1  
The condensation of heavy hydrocarbon causes the coke formation inside the disengager vessel. Slurry oil is the heaviest component of FCC hydrocarbon products and most likely to be condensed to form coke. Converting slurry to lighter hydrocarbons can alleviate coke formation. The slurry cracking experiments were carried out in a confined fluidized bed reactor. The results showed that the crackability of slurry was lower than that of FCC feedstock, due to the difference of their properties. About 30 wt.% heavy oil remained in the product after the slurry was cracked, but its end point declined and the heavier component decreased. The comparison of slurry cracking results at different reaction temperatures and regenerated catalyst contents indicated that the appropriate operating conditions for slurry conversion were the reaction temperature of 500 °C and the regenerated catalyst content within 25–50 wt.%.  相似文献   

11.
The laboratory findings were presented for a single-stage hydrocracking process of vacuum residue (VR) of Ural crude. The Ni–Mo/Al2O3 catalyst in suspension was used in tests. The amounts and quality of the obtained products were related to process parameters. Hydrocracking of VR was carried out in a continuous flow reactor, at the temperature of 410–450 °C and pressure of 12–20 MPa, at the liquid space velocity (LHSV) of 0.25–0.75 h 1, and at the gas space velocity of 2500 h 1.The studied catalyst Ni–Mo/Al2O3 was found moderately active in the VR cracking process, while it turned out an efficient catalyst for the hydrofining processes. The catalyst concentration and hydrogen pressure had no effect on hydrocracking of VR, and hydrofining of cracking products was affected slightly only over the studied scope of parameters. The reaction temperature and LHSV exerted dramatic effects on hydrocracking of VR and on the asphaltenes and CCR contents, while their effect on hydrofining of cracking products was much lower. The temperature of 430 °C resulted in VR conversion to distillates (b.p. < 538 °C) of 61.6–88.7 wt.% and in sulphur conversion of 70–85 wt.%.  相似文献   

12.
《Catalysis Reviews》2008,50(1):1-18
Previously derived fundamental rate equations for coke formation and catalyst deactivation are applied to the modeling of a number of commercial processes: steam reforming of natural gas, styrene production from ethylbenzene, catalytic cracking of heavy oil fractions, methanol-to-olefins on SAPO 34, and solid acid alkylation on a Y zeolite. The modeling accounts in great detail for the chemistry of the process, including the formation of the deactivating agent, commonly called coke. It is shown that the deactivating agent is not an inert substance but is involved in reactions, sometimes of the same type as those leading to the main products of the process.  相似文献   

13.
In the fluid catalytic cracking reactor heavy gas oil is cracked into more valuable lighter hydrocarbon products. The reactor input is a mixture of hydrocarbons which makes the reaction kinetics very complicated due to the involved reactions. In this paper, a four-lump model is proposed to describe the process. This model is different from others mainly in that the deposition rate of coke on catalyst can be predicted from gas oil conversion and isolated from the C1C4 gas yield. This is important since coke supplies heat required for endothermic reactions occurring in the reactor. By this model we can also conclude that the C1–C4 gas yield increases with increasing reactor temperature, while production of gasoline and coke decreases.  相似文献   

14.
This study presents new experimental results on the direct conversion of crude oil to chemicals via steam-enhanced catalytic cracking. We have organized the experimental results with a kinetics model using crude oil and steam co-feed in a fixed-bed flow reactor at reaction temperatures of 625, 650, and 675°C over the Ce-Fe/ZSM-5 catalyst. The model let us find optimum conditions for crude oil conversion, and the order of the steam cracking reaction was 2.0 for heavy oil fractions and 1.0 for light oil fractions. The estimated activation energies for the steam cracking reactions ranged between 20 and 200 kJ/mol. Interestingly, the results from kinetic modelling helped in identifying a maximum yield of light olefins at an optimized residence time in the reactor at each temperature level. An equal propylene and ethylene yield was observed between 650 and 670°C, indicating a transition from dominating catalytic cracking at a lower temperature to a dominating thermal cracking at a higher temperature. The results illustrate that steam-enhanced catalytic cracking can be utilized to effectively convert crude oil into basic chemicals (52.1% C2-C4 light olefins and naphtha) at a moderate severity (650°C) as compared to the conventional high-temperature steam cracking process.  相似文献   

15.
With the purpose of increasing the yield of light C2-C4 olefins in comparison with that in conventional catalytic cracking, we experimentally study the effect of temperature and catalyst-to-oil ratio on the distribution of the basic products of oil catalytic cracking on the bizeolite and industrial LUX catalysts. The bizeolite catalyst contains ZSM-5 and ultrastable Y zeolites in equivalent amounts, while the LUX catalyst contains 18 wt % of Y zeolite in the HRE form. As shown by the results of our tests, the yield of C2-C4 olefins and gasoline in the deep catalytic cracking of hydrotreated vacuum gasoil on the bizeolite catalyst within a range of catalyst-to-oil ratios of 5–7 and temperatures of 540–560°C reaches 32–36 and nearly 30 wt %, respectively. In cracking on the LUX catalyst under similar conditions, the yield of light olefins and gasoline is 12–16 and 37–45 wt %, respectively. The distribution of target products in the deep catalytic cracking of different hydrocarbon fractions (vacuum gasoil, gas condensate, its fraction distilled from the cut boiling below 216°C, and the hydrocracking heavy residue) on the bizeolite catalyst is studied. It is shown that the fractions of gas condensate and hydroc-racking residue can serve as an additional source of hydrocarbon raw materials in the production of olefins.  相似文献   

16.
催化裂化催化剂RSC-2006采用焦炭选择性较好的大孔富硅基质以降低焦炭收率;添加活性基质组分以增强催化剂的重油裂化能力,同时调节基质的表面酸性,在保证重油预裂化能力的同时改善焦炭选择性;对分子筛进行物化处理,清理和疏通分子筛的孔道,改善分子筛对劣质重油催化裂化的可接近性;引入抗金属污染组分,提高催化剂的抗金属污染能力。工业应用结果表明,催化剂具有优异的重油转化能力和优良的焦炭选择性。与对比催化剂相比,油浆和焦炭收率降低,大幅增加高价值产品收率,液化气+汽油+柴油收率提高。  相似文献   

17.
Based on experimental and calculation studies, it was demonstrated that, after the hydroconversion of tars and other heavy petroleum residues in the presence of a nanosized catalyst based on MoS2 or MoS2 and NiS, V, Ni, and Mo were quantitatively transferred to high-boiling fractions (HBFs) with boiling temperatures of >420–520°C and coke. At coke yields of <0.5%, V, Ni, and Mo were almost completely concentrated in the HBF removed from the process. A hydrometallurgical process based on the treatment of ash and slag wastes (ASWs) with an ammonia solution of ammonium carbonate was developed. The resulting aqueous solution contained Mo and Ni compounds (nanosized catalyst precursors) with Mo recovery to 80% and V and Ni recovery of >10% (on a weight basis in a HBF or its mixture with coke). Vanadium was extracted as V2O5 from the aqueous solution. The extraction of V and Ni from the solid residue after hydrometallurgical processing into commercial products can be performed by currently available industrial processes.  相似文献   

18.
Punitkumar R. Kapadia 《Fuel》2011,90(6):2254-2265
The volume of heavy oil and bitumen in Alberta, Canada is estimated to be about 1.7 trillion barrels. The majority of the produced heavy oil and bitumen in Alberta is converted in surface upgraders to synthetic crude oil, a crude oil with API gravity typically between 31 and 33° API, which in turn can be converted to fuel, lubricant, and petrochemical products in standard refineries. To upgrade bitumen requires hydrogen. In current practice, much of this hydrogen is generated from catalytic steam reforming of methane together with the water-gas shift reaction. This means that heavy oil and bitumen upgrading, as is currently done, requires large amounts of natural gas to generate hydrogen. The potential for in situ generation of hydrogen by gasification of bitumen reservoirs offers an attractive alternative which can also have both economic and environmental benefits. For example, hydrogen generated from bitumen gasification can also be used for in situ upgrading as well as feedstock for ammonia and other chemicals. The water-gas shift reaction also generates carbon dioxide which could be potentially sequestered in an in situ gasification process so that emissions to the atmosphere are reduced. This technology provides a potential clean method to produce fuel and feedstock material from bitumen, a relatively “dirty” fuel and feedstock oil, in addition to more energy efficient ways of extracting in situ heavy oils. However, to design in situ bitumen gasification processes requires a reaction model that provides a reasonable representation of the gasification reactions. Here, a new kinetic model is developed to examine the potential for hydrogen generation from Athabasca bitumen. The kinetic model consists of thermal cracking, oxidation/combustion, hydrogen generation and hydrogen consumption reactions. A comparison of the simulation results and experimental data from the published literature reveal that the new model can predict hydrogen generation from gasification of methane, Athabasca bitumen, and coke.  相似文献   

19.
Unlike conventional refinery processing, downhole upgrading involves implementing catalytic processes in oil-bearing geologic formations. In this way impurities contained in heavy crude oil can possibly be left in the ground or easily separated during oil production, providing an improved crude oil feed for refineries. Additionally, value or viability can be added to an otherwise uneconomic or remote heavy oil deposit. In order to successfully produce improved quality oil via a downhole upgrading project, several processing steps are anticipated: placement of catalysts into an appropriate downhole location, mobilization of reactants over the catalyst bed, and creation of processing conditions necessary to achieve a reasonable degree of catalytic upgrading. Each of these steps has been proven by past application; their combination into a unified below-ground process remains problematic. Downhole processing differs from surface processing in that brine, high steam partial pressures and low hydrogen partial pressures need to be accommodated in the downhole setting. There are no reports of significant downhole catalytic upgrading of crude oil, although examples of thermal upgrading are noted. However, available technology should be amenable to conducting a successful process. Upgrading of heavy crude oil at anticipated downhole processing conditions has been successfully proven in the laboratory. Recently published literature with immediate pertinence to the problems of downhole catalytic upgrading is reviewed with the goal of stimulating research and providing directions for future investigations.  相似文献   

20.
Hydro‐liquefaction of a woody biomass (birch powder) in sub‐/super‐critical methanol without and with catalysts was investigated with an autoclave reactor at temperatures of 473–673 K and an initial pressure of hydrogen varying from 2.0 to 10.0 MPa. The liquid products were separated into water soluble oil and heavy oil (as bio‐crude) by extraction with water and acetone. Without catalyst, the yields of heavy oil and water soluble oil were in the ranges of 2.4–25.5 wt % and 1.2–17.0 wt %, respectively, depending strongly on reaction temperature, reaction time, and initial pressure of hydrogen. The optimum temperature for the production of heavy oil and water soluble oil was found to be at around 623 K, whereas a longer residence time and a lower initial H2 pressure were found to be favorite conditions for the oil production. Addition of a basic catalyst, such as NaOH, K2CO3, and Rb2CO3, could significantly promote biomass conversion and increase yields of oily products in the treatments at temperatures less than 573 K. The yield of heavy oil attained about 30 wt % for the liquefaction operation in the presence of 5 wt % Rb2CO3 at 573 K and 2 MPa of H2 for 60 min. The obtained heavy oil products consisted of a high concentration of phenol derivatives, esters, and benzene derivatives, and they also contained a higher concentration of carbon, a much lower concentration of oxygen, and a significantly increased heating value (>30 MJ/kg) when compared with the raw woody biomass. © 2009 American Institute of Chemical Engineers AIChE J, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号